The regeneration capacity of caudal fin in the common tooth-carp, Aphanius dispar (Rüppell, 1829) (Teleostei: Cyprinodontidae)

Faezeh Zeinali, Mina Motamedi


Regeneration ability is known for several Actinopterygii or ray-finned fishes. In order to assess the universality of regenerative potencies in this group of fishes, we have examined for the first time, caudal fin regeneration in tooth-carp, Aphanius dispar (Rüppell, 1829). The caudal fin is used because of its accessibility, simple structure and fast regeneration. The results revealed the regeneration ability in caudal fin of A. dispar. The initiation of the regenerative outgrowth was differing in three examined water temperatures. It is started approximately 5 days post amputation (5 dpa) at room temperature, and 2 dpa at 25°С and 28°С. Our finding indicates that water temperature more than 25°С promotes procedure in caudal fin regeneration of A. dispar. By considering the high regeneration ability in A. dispar, and also the relatively short life span of the members of the genus Aphanius, we concluded that these fishes could probably be used in regeneration researches. However, details of this mechanism in Aphanius need further examinations.


Regeneration, Blastema, Caudal fin, Cyprinodontids, Aphanius.

Full Text:



Azevedo A.S., Grotek B., Jacinto A., Weidinger G., Saúde L. (2011). The regenerative capacity of the zebrafish caudal fin is not affected by repeated amputations. PLoS ONE, 6: e22820.

Azevedo A.S., Sousa S., Jacinto A. (2012). An amputation resets positional information to a proximal identity in the regenerating zebrafish caudal fin. BMC Developmental Biology, 12: 1-12.

Bely A.E., Nyberg K.G. (2010). Evolution of animal regeneration: re-emergence of a field. Trends in Ecology and Evolution, 25: 161-170.

Brockes J.P., Kumar A. (2008). Comparative aspects of animal regeneration. Annual Review of Cell and Developmental Biology, 24: 525-549.

Esmaeili H.R., Mehraban H., Abbasi K., Keivany Y., Coad B.W. (2017). Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status. Iranian Journal of Ichthyology, 4(Suppl. 1): 1-114.

Ferrito V., Pappalardo A.M., Canapa A., Barucca M., Doadrio I., Olmo E., Tigano C. (2013). Mitochondrial phylogeography of the killifish Aphanius fasciatus (Teleostei, Cyprinodontidae) reveals highly divergent Mediterranean populations. Marine Biology, 160: 3193-3208.

Galis F., Wagner G.P., Jockusch E.L. (2013). Why is limb regeneration possible in amphibians but not in reptiles, birds, and mammals. Evolutionary development, 5: 208-220.

Hall B.K. (2005). Bones and cartilage: developmental and evolutionary skeletal biology. Elsevier Academic Press, California., USA. 760 p.

Homski D., Goren M., Gasith A. (1994). Comparative evaluation of the larvivorous fish Gambusia affinis and Aphanius dispar as mosquito control agents. Hydrobiologia, 284: 137-146.

Hoppe B., Pietsch S., Franke M., Engel S., Groth M., Platzer M., Englert C. (2015). MiR-21 is required for efficient kidney regeneration in fish. BMC Developmental Biology, 15: 2-10.

Hrbek T., Meyer A. (2013). Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). Journal of Evolutionary Biology, 16: 17-36.

Iovine M. (2007). Conserved mechanisms regulate outgrowth in zebrafish fins. Nature Chemical Biology, 3: 613-18.

Kim Y., Nam H.G., Valenzano D.R. (2016). The short-lived African turquoise killifish: an emerging experimental model for ageing. Disease Models and Mechanisms, 9: 115-129.

Neer W.V., Wildekamp R.H., Unlüsayin M. (1999). First inland records of the euryhaline goby Knipowitschia caucasica from lakes in Anatolia, Turkey. Journal of Fish Biology, 54: 1334-1337.

Nechiporuk A., Keating M.T. (2002). A proliferation gradient between proximal and msxb-expressing distal blastema directs zebrafish fin regeneration. Development, 129: 2607-2617.

Pfefferli C., Jazwinska A. (2015). The art of fin regeneration in zebrafish. Regeneration, 2: 72-83.

Poss K.D., Shen J., Nechiporuk A., McMahon G., Thisse B., Thisse C., Keating M.T. (2000). Roles for Fgf signaling during zebrafish fin regeneration. Developmental Biology, 222: 347-358.

Poss K.D., Shen J., Keating M.T. (2000). Induction of lef1 during zebrafish fin regeneration. Developmental Dynamic, 219: 282-286.

Poss K.D., Keating M.T., Nechiporuk A. (2003). Tales of regeneration in zebrafish. Developmental Dynamic, 226: 202-210.

Reichenbacher B., Kamrani E., Esmaeili H.R., Teimori A. (2009). The endangered cyprinodont Aphanius ginaonis (Holly, 1929) from southern Iran is a valid species: evidence from otolith morphology. Environmental Biology of Fishes, 86: 507-521

Rink J.C. (2013). Stem cell systems and regeneration in planaria. Development Genes and Evolution, 223: 67-84.

Schneider C.A., Rasband W., Eliceiri K.W. (2012). NIH Image to Image J: 25 years of image analysis. Nature Methods, 9: 671-675.

Teimori A., Esmaeili H.R., Gholami Z., Zarei N., Reichenbacher B. (2012). Aphanius arakensis, a new species of tooth-carp (Actinopterygii, Cyprinodontidae) from the endorheic Namak Lake basin in Iran. ZooKeys, 215: 55-76.

Teimori A., Motamedi M., Askari Hesni M. (2016). Fish morphology and mitochondrial phylogeny reveal translocations of a native Aphanius Nardo, 1827 (Teleostei: Cyprinodontidae) in Iran. Iranian Journal of Ichthyology, 3: 181-189.

Unguez G.A. (2013). Electric fish: new insights into conserved processes of adult tissue regeneration. Journal of Experimental Biology, 216: 2478-2486.

Wagner G.P., Misof B.Y. (1992). Evolutionary modification of regenerative capability in vertebrates: a comparative study on teleost pectoral fin regeneration. Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology, 261: 62-78.

Wildekamp R.H. (1993). A world of killies. Atlas of the oviparous cyprinodontiform fishes of the world. The genera Adamas, Adinia, Aphanius, Aphyoplatys and Aphyosemion. Indiana, American Killifish Association, Indiana, 311 p.


  • There are currently no refbacks.