Effects of salinity on rearing performance of bighead catfish (Clarias macrocephalus Günther, 1864) juveniles
Downloads
Expanding the production of bighead catfish (Clarias macrocephalus Günther, 1864), a key freshwater species in Vietnamese aquaculture, into brackish water environments is essential in light of increasing saline intrusion into freshwater ecosystems driven by global climate change. A completely randomized design with three replicates was conducted in 0.5 m³ composite tanks to evaluate the effects of salinities (0, 2, 4, 6, and 8‰) on the rearing performance of juvenile C. macrocephalus. The juveniles (11.21 g and 11.49 cm) were stocked at a density of 45 individuals per tank (ind tank?¹) and fed Aquagreen commercial pellets containing 30% crude protein. After 180 days of culture, the highest growth performance was observed at 2‰ salinity and declined significantly at salinities ? 4‰ (P?0.05), likely contributing to significantly reduced productivity at 8‰ (P?0.05). Survival rates remained stable between 2 and 8‰ (P?0.05) and were significantly higher than those at 0‰ (P?0.05). Although growth performance at 0‰ was only slightly lower than that at 2‰ (P?0.05), the significantly lower survival rate at this salinity likely contributed to the significant decrease in productivity (P?0.05). The coefficient of variation in weight (CVW) was significantly higher at salinities of 2-4‰ compared to other treatments (P? 0.05), but it ranged from 3.33 to 6.64% in tested salinities (0-8‰), which fell within the ideal range for fish culture. Based on the findings, 2‰ salinity is recommended as optimal for juvenile C. macrocephalus culture.
Downloads
Aaqillah-Amr M.A., Fatan N.A., Khairul Rizal A.B., Chin H.B., Ramli M.R., Sharbini N.S., Sok S., Sonoan K., Soth V., Sithirith M., Reyes M., Hok L., Yossa R. (2023). Development of bighead catfish (Clarias macrocephalus) culture for sustainable aquaculture in Cambodia. Workshop report. Penang, Malaysia: WorldFish. Workshop Report: 2023-36.
Abisha R., Krishnani K.K., Sukhdhane K., Verma A.K., Brahmane M., Chadha N.K. (2022). Sustainable development of climate-resilient aquaculture and culture-based fisheries through adaptation of abiotic stresses: A review. Journal of Water and Climate Change, 13: 2671-2689.
Abou Anni I.S., Bianchini A., Barcarolli I.F., Varela A.S., Robaldo R.B., Tesser M.B., Sampaio L.A. (2016). Salinity influence on growth, osmoregulation and energy turnover in juvenile pompano Trachinotus marginatus Cuvier 1832. Aquaculture, 455: 63-72.
Alam M.R., Sharmin S., Islam S.M.M., Alam M.A., Ehiguese F.O., Pattadar S.N., Shahjahan M. (2020). Salinity intrusion affects early development of freshwater aquaculture species pabda, Ompok pabda. Aquaculture Reports, 18: 100476.
Allen K.O., Avault J.W.Jr. (1970). Effects of salinity on growth and survival of channel catfish, Ictalurus punctatus. Proceedings of the Southeastern Association of Game and Fish Commissioners, 23: 319-331.
Anni I.S.A., Bianchini A., Barcarolli I.F., Varela A.S., Robaldo R.B., Tesser M.B., Sampaio L.A. (2016). Salinity influence on growth, osmoregulation and energy turnover in juvenile pompano Trachinotus marginatus Cuvier 1832. Aquaculture, 455: 63-72.
Bal A., Panda F., Pati S.G., Das K., Agrawal P.K., Paital B. (2021). Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 241: 108971.
Bhatnagar A., Devi P. (2013). Water quality guidelines for the management of pond fish culture. International Journal of Environmental Sciences, 3: 1980-2009.
Boeuf G., Payan P. (2001). How should salinity influence fish growth? Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 130: 411-423.
Boyd C.E. (1998). Water quality for pond aquaculture (Research and Development Series No. 43). Auburn University, Alabama Agricultural Experiment Station.
Chainy G.B.N., Sahoo D.K. (2020). Hormones and oxidative stress: An overview. Free Radical Research, 54: 1-26.
Dawood M.A.O., Gewaily M.S., Sewilam H. (2022). The growth performance, antioxidative capacity, and histological features of intestines, gills, and livers of Nile tilapia reared in different water salinities and fed menthol essential oil. Aquaculture, 554: 738122.
Duong T.Y., Win T.S., Nguyen T.N.T. (2023). Effects of parental age on offspring growth and survival in both wild and domesticated strains of bighead catfish (Clarias macrocephalus Günther, 1864). Aquaculture and Fisheries, 8: 141-147.
Duong T.Y., Scribner K.T., Kanefsky J., Na-Nakorn U. (2017). Lack of introgressive hybridization by North African catfish (Clarias gariepinus) in native Vietnamese bighead catfish (Clarias macrocephalus) populations as revealed by novel nuclear and mitochondrial markers. Aquaculture, 473: 468-477.
Erikson U., Rosten C., Klebert P., Aspaas S., Rosten T. (2022). Live transport of Atlantic salmon in open and closed systems: Water quality, stress and recovery. Aquaculture Research, 53: 3913-3926.
Garlock T., Asche F., Anderson J., Bjørndal T., Kumar G., Lorenzen K., Ropicki A., Smith M.D., Tveterås R. (2020). A global blue revolution: Aquaculture growth across regions, species and countries. Reviews in Fisheries Science and Aquaculture, 28: 107-116.
Gjedrem T. (1997). Contribution from selective breeding to future aquaculture development. Journal of the World Aquaculture Society, 28(2): 33-45.
Hien T.T., Hoa T.T.T., Liem P.T., Onoda S., Duc P.M. (2021). Effects of dietary supplementation of heat-killed Lactobacillus plantarum L-137 on growth performance and immune response of bighead catfish (Clarias macrocephalus). Aquaculture Reports, 20: 100741.
Hien T.T.T., Tuan L., Tu T.L.C., Tam B.M. (2018). Dietary protein requirement of bighead catfish (Clarias macrocephalus Günther, 1864) fingerling. International Journal of Scientific and Research Publications (IJSRP), 8: 4-10.
Iwama G.K. (1996). Growth of salmonids. In: W. Pennell, B.A. Barton (Eds.), Principles of Salmonid Culture, Elsevier. pp: 467-516.
Kang’ombe J., Brown J.A. (2008). Effect of salinity on growth, feed utilization, and survival of Tilapia rendalli under laboratory conditions. Journal of Applied Aquaculture, 20: 256-271.
Kashem A.H.M., Das P., AbdulQuadir M., Khan S., Thaher M.I., Alghasal G., Hawari A.H., Al-Jabri H. (2023). Microalgal bioremediation of brackish aquaculture wastewater. Science of The Total Environment, 873: 162384.
Konstantinov A.S., Martynova V.V. (1993). Effect of salinity fluctuations on energetics of juvenile fish. Journal of Ichthyology, 33: 161-166.
ewis S.D. (1972). Effect of selected concentrations of sodium chloride on the growth of channel catfish. Proceedings of the Southeastern Association of Game and Fish Commissioners, 25: 459-466.
Lisachov A., Nguyen D.H.M., Panthum T., Ahmad S.F., Singchat W., Ponjarat J., Jaisamut K., Srisapoome P., Duengkae P., Hatachote S., Sriphairoj K., Muangmai N., Unajak S., Han K., Na-Nakorn U., Srikulnath K. (2023). Emerging importance of bighead catfish (Clarias macrocephalus) and North African catfish (C. gariepinus) as a bioresource and their genomic perspective. Aquaculture, 573: 739585.
Liu D., Zhang Z., Song Y., Yang J., Yuyou L., Lai W., Ziyi W., Zhao D., Lin H., Zhang Y., Zhang J., Li S. (2023). Effects of salinity on growth, physiology, biochemistry and gut microbiota of juvenile grass carp (Ctenopharyngodon idella). Aquatic Toxicology, 258: 106482.
Lupatsch I. (2019). Transport of live fish. In: Aquaculture Engineering, 3rd ed. John Wiley & Sons Ltd. https://doi.org/10.1002/9781119489047.ch23
Mandal R., Goswami B., Sarma M., Nath H.K. (2023). Extreme weather events and food insecurity in Northeast India. In: S. Anand, M. Das, R. Bhattacharyya, R.B. Singh (Eds.), Sustainable development goals in northeast India. Advances in Geographical and Environmental Sciences.
Mandal S.C., Islam M., Ahsan D.A., Hossain A., Ali Ahsan D. (2014). Effects of salinity changes on growth performance and survival of rohu fingerlings, Labeo rohita (Hamilton, 1822). Journal of Coastal Development, 17(1): 379.
Mandal S.C., Kadir S., Hossain A. (2020). Effects of salinity on the growth, survival, and proximate composition of pangas, Pangasius hypophthalmus. Bangladesh Journal of Zoology, 48: 141-149.
Martins A.W.S., Dellagostin E.N., Blödorn E.B., Silveira T.L.R., Sampaio L.A., Komninou E.R., Varela Junior A.S., Corcini C.D., Nunes L.S., Remião M.H., Collares G.L., Domingues W.B., Campos V.F. (2022). Exposure to salinity induces oxidative damage and changes in the expression of genes related to appetite regulation in Nile tilapia (Oreochromis niloticus). Frontiers in Genetics, 13: 948228.
Menon S.V., Kumar A., Middha S.K., Paital B., Mathur S., Johnson R., Kademan A., Usha T., Hemavathi K.N., Dayal S., Ramalingam N., Subaramaniyam U., Sahoo D.K., Asthana M. (2023). Water physicochemical factors and oxidative stress physiology in fish: A review. Frontiers in Environmental Science, 11: 1240813.
Mohamed N.A., Saad M.F., Shukry M., El-Keredy A.M.S., Nasif O., Van Doan H., Dawood M.A.O. (2021). Physiological and ion changes of Nile tilapia (Oreochromis niloticus) under the effect of salinity stress. Aquaculture Reports, 19: 100567.
Mollah M.F.A., Tan E.S.P. (1983a). HCG-induced spawning of the catfish, Clarias macrocephalus (Günther). Aquaculture, 35: 239-247.
Mollah M.F.A., Tan E.S.P. (1983b). Viability of catfish (Clarias macrocephalus) eggs fertilized at varying post-ovulation times. Journal of Fish Biology, 22: 563-566.
Moniruzzaman M., Mukherjee M., Kumar S., Ghosh A.R., Chatterjee D., Banerjee S., Bhattacharya S. (2022). Effects of salinity stress on antioxidant status and inflammatory responses in females of a “Near Threatened” economically important fish species Notopterus chitala: A mechanistic approach. Environmental Science and Pollution Research, 29: 75031-75042.
Mugwanya M., Kimera F., Madkour K., Baza H.M., Sebulime P. (2023). Influence of salinity on the biometric traits of striped catfish (Pangasianodon hypophthalmus) and barley (Hordeum vulgare) cultivated under an integrated aquaculture–agriculture system. BMC Plant Biology, 23: 417.
Na-Nakorn U., Brummett R.E. (2009). Use and exchange of aquatic genetic resources for food and aquaculture: Clarias catfish. Reviews in Aquaculture, 1: 214-223.
Na-Nakorn U., Kamonrat W., Ngamsiri T. (2004). Genetic diversity of walking catfish, Clarias macrocephalus, in Thailand and evidence of genetic introgression from introduced farmed C. gariepinus. Aquaculture, 240: 145-163.
National Research Council (2011). Nutrient requirements of fish and shrimp. The National Academy of Sciences.
Nguyen T.K., Nguyen T.E., Nguyen M.N., Takagi Y., Nguyen T.P., Do T.T.H. (2021). Effects of salinity on growth performance, survival rate, digestive enzyme activities and physiological parameters of striped catfish (Pangasianodon hypophthalmus) at larval stage. Can Tho University Journal of Science, 13: 1-9.
Nho N.T.H., Hong H.T.K., Liem P.T. (2018). Effects of stocking density on water quality, growth and survival rate of yellow catfish (Clarias macrocephalus) in recirculating system. Can Tho University Journal of Science, 54: 108-114.
Nordlie F.G. (2009). Environmental influences on regulation of blood plasma/serum components in teleost fishes: A review. Reviews in Fish Biology and Fisheries, 19: 481-564.
Saha M.K., Fatan N.A., Aaqillah-Amr M.A., Sok S., Yossa R. (2023). A guide for bighead catfish farming using better management practices. Penang, Malaysia: WorldFish. Program Report: 2023-54.
Sarma K., Prabakaran K., Krishnan P., Grinson G., Anand Kumar A. (2013). Response of a freshwater air-breathing fish, Clarias batrachus, to salinity stress: An experimental case for their farming in brackish-water areas in Andaman, India. Aquaculture International, 21: 183-196.
Seale A.P., Watanabe S., Grau E.G. (2012). Osmoreception: Perspectives on signal transduction and environmental modulation. General and Comparative Endocrinology, 176: 354-360.
Sharma K., Dey A., Kumar S., Chaudhary B.K., Mohanty S., Kumar T., Sahoo A.K. (2020). Effect of salinity on growth, survival and biochemical alterations in the freshwater fish Labeo rohita (Hamilton, 1822). Indian Journal of Fisheries, 67: 41-47.
Starling D.E. (2025). Topics in aquatic animal health (Pre-publication version). Iowa State University Digital Press. https://iastate.pressbooks.pub/aquaticanimal health/.
Tahir R., Ghafar A., Afzal F., Samra Jamil, H., Habiba U., Umbreen H., Sufian M., Bukhari N.A., Khan H., Aslam H., Tariq M., Yang S. (2025). Growth performance, blood health, and antioxidant status of freshwater carp under brackish water rearing system: Sustainable aquaculture approach in arid and semi-arid conditions. Aquaculture, 596: 741691.
Thao L.N.N., Dinh T.D., Yen D.T. (2017). Current status of exploitation of yellow catfish (Clarias macrocephalus) in the Mekong Delta. Can Tho University Journal of Science, 48: 18-26.
Vidthayanon C., Allen D. (2013). Clarias macrocephalus. The IUCN Red List of Threatened Species 2013. e.T166020A6170044. Accessed on 11 May 2016.
Vidthayanon C., Allen D.J. (2020). The IUCN Red List of Threatened Species 2011, 8235.
Wang J., Jaramillo-Torres A., Li Y., Dahle D., Rudi K., Krogdahl Å., Kortner T.M. (2021). Microbiota in intestinal digesta of Atlantic salmon (Salmo salar), observed from late freshwater stage until one year in seawater, and effects of functional ingredients: A case study from a commercial sized research site in the Arctic region. Animal Microbiome, 3: 14.
Wang J.Q., Liu H., Po H., Fan L. (1997). Influence of salinity on food consumption, growth and energy conversion efficiency of common carp (Cyprinus carpio) fingerlings. Aquaculture, 148: 115-124.
Woo N.Y., Kelly S.P. (1995). Effects of salinity and nutritional status on growth and metabolism of Sparus sarba in a closed seawater system. Aquaculture, 135: 229-238.
Xiao H., Tang Y., Li H., Zhang L., Ngo-Duc T., Chen D., Tang Q. (2021). Saltwater intrusion into groundwater systems in the Mekong Delta and links to global change. Advances in Climate Change Research, 12: 342-352.
Yue G.H., Ma K.Y., Xia J.H. (2023). Status of Conventional and Molecular breeding of salinity-tolerant tilapia. Reviews in Aquaculture, 16: 271-286.
Copyright (c) 2025 International Journal of Aquatic Biology

This work is licensed under a Creative Commons Attribution 4.0 International License.







