Enhancing shrimp health and immunity through diets supplemented with indigenous intestinal lactic acid bacteria: Implications for Vibrio parahaemolyticus infections
Downloads
Lactic acid bacteria (LAB) have demonstrated significant potential as probiotic agents against various pathogens. The objective of this research was to investigate the potential of indigenous intestinal LAB in combating Acute Hepatopancreatic Necrosis Disease (AHPND) in Litopenaeus vannamei. The study ultimately identified the probiotic potential of Enterococcus faecalis isolated from shrimp intestines, focusing on its adaptability to varying salinity and pH levels, as well as its antibacterial efficacy. In this study, L. vannamei was fed freeze-dried E. faecalis combined with commercial feed to stimulate its immune system. Immune responses were assessed by measuring total hemocyte count (THC), phenoloxidase (PO) activity, respiratory burst (RB), transglutaminase (TG) activity, lysozyme activity, and hemocyte phagocytosis. Additionally, specific growth rate (SGR), weight gain (WG), feed conversion ratio (FCR), and survival rate (SR) were measured to assess the shrimp's growth performance. The experimental design included five treatments (0, 1, 2, 3, and 4 g of freeze-dried E. faecalis per kg of commercial feed), with each treatment consisting of four replicates. The results indicated that the T4 dosage was optimal for enhancing immune responses and growth performance while reducing mortality compared to other treatments. This research adds to the growing body of evidence supporting the use of E. faecalis as a probiotic in mitigating Vibrio parahaemolyticus infections.
Downloads
Adegoke A., Ribeiro J.M., Brown S., Smith R.C., Karim S. (2023). Rickettsia parkeri hijacks tick hemocytes to manipulate cellular and humoral transcriptional responses. Frontiers in Immunology, 14: 1094326.
AftabUddin S., Siddique M.A.M., Romkey S.S., Shelton W.L. (2017). Antibacterial function of herbal extracts on growth, survival and immunoprotection in the black tiger shrimp Penaeus monodon. Fish and Shellfish Immunology, 65: 52-58.
Ai Y., Cai X., Liu L., Li J., Long H., Ren W., Huang A.-Y., Zhang X., Xie Z.-y. (2022). Effects of different dietary preparations of Enterococcus faecalis F7 on the growth and intestinal microbiota of Pacific white shrimp (Litopenaeus vannamei). Aquaculture Research, 53(8): 3238-3247.
Ako?lu A. (2020). The effect of some environmental conditions on planktonic growth and biofilm formation by some lactic acid bacteria isolated from a local cheese in Turkey. Biotechnology Letters, 42: 481-492.
Alvanou M.V., Feidantsis K., Staikou A., Apostolidis A.P., Michaelidis B., Giantsis I.A. (2023). Probiotics, prebiotics, and synbiotics utilization in crayfish aquaculture and factors affecting gut microbiota. Microorganisms, 11(5).
Arisandi A., Wardhani M.K., Badami K., Sopiyanti A. (2018). Pengaruh perbedaan salinitas terhadap viabilitas bakteri Pseudomonas spp. Rekayasa, 10(1).
Beltran M.J., Quimi Mujica J., Diringer B., Barahona S.P. (2023). Alterations in the gut microbiome of whiteleg shrimp (Penaeus vannamei) postlarvae following exposure to an AHPND-causing strain of Vibrio parahaemolyticus. Biorxiv, 2023.2007.2015.548467.
Boopathi S., Meenatchi R., Brindangnanam P., Sudhakaran G., Coumar M.S., Arockiaraj J. (2023). Microbiome analysis of Litopenaeus vannamei reveals Vibrio as main risk factor of white faeces syndrome. Aquaculture, 576: 739829.
Brown A.E., Smith H.R. (2016). Benson’s microbiological applications laboratory manual in general microbiology. Fourteenth Edition, Mc Graw Hill International Edition ed.).
Bungau S., Tit D.M., Behl T., Aleya L., Zaha D.C. (2021). Aspects of excessive antibiotic consumption and environmental influences correlated with the occurrence of resistance to antimicrobial agents. Current Opinion in Environmental Science and Health, 19: 100224.
Castellanos A., Restrepo L., Bajaña L., Betancourt I., Bayot B., Reyes A. (2023). Genomic and evolutionary features of nine AHPND positive Vibrio parahaemolyticus strains isolated from South American Shrimp Farms. Microbiology Spectrum, e04851-04822.
Chandran A., Beena A., Bhagya S., Rathish R., Rahila M. (2022). Probiotic characterisation of Enterococcus faecalis strain isolated from a household dahi sample of Wayanad district, Kerala. Journal of Veterinary and Animal Sciences, 53(1): 70-78.
Chang C.-C., Chang H.-C., Liu K.-F., Cheng W. (2016). The known two types of transglutaminases regulate immune and stress responses in white shrimp, Litopenaeus vannamei. Developmental and Comparative Immunology, 59: 164-176.
Chen L., Lv C., Li B., Zhang H., Ren L., Zhang Q., Zhang X., Gao J., Sun C., Hu S. (2021). Effects of Bacillus velezensis supplementation on the growth performance, immune responses, and intestine microbiota of Litopenaeus vannamei. Frontiers in Marine Science, 8.
Chen Y.-Y., Chen J.-C., Tayag C.M., Li H.-F., Putra D.F., Kuo Y.-H., Bai J.-C., Chang Y.-H. (2016). Spirulina elicits the activation of innate immunity and increases resistance against Vibrio alginolyticus in shrimp. Fish and Shellfish Immunology, 55: 690-698.
Chin I.C., Wen-Yu L., Chung-Zen S. (2000). Use of prawn blood agar hemolysis to screen for bacteria pathogenic to cultured tiger prawns Penaeus monodon. Diseases of Aquatic Organisms, 43(2): 153-157.
Dew A.K. (2013). Isolasi, identifikasi dan uji sensitivitas Staphylococcus aureus terhadap amoxicillin dari sampel susu kambing peranakan ettawa (PE) penderita mastitis di wilayah Girimulyo, Kulonprogo, Yogyakarta. Jurnal Sain Veteriner, 31(2): 138-150.
Ekaputri R., Arief M., Rahardja B. (2018). Effect of chitosan supplementation in commercial feed for specific growth rate and protein retention of Litopenaeus vannamei. Journal of Marine and Coastal Science, 7(2): 39-50.
Elias N.A., Abu Hassan M.S., Yusoff N.A.H., Tosin O.V., Harun N.A., Rahmah S., Hassan M. (2023). Potential and limitation of biocontrol methods against vibriosis: a review. Aquaculture International, 1-44.
Fallo G., Sine Y. (2016). Isolasi dan uji biokimia bakteri selulolitik asal saluran pencernaan rayap pekerja (Macrotermes spp.). BIO-EDU: Jurnal Pendidikan Biologi, 1(2): 27-29.
Fernandes S., Kerkar S., D'Costa A., Costa M., Mishra A., Shyama S.K., Das K.R. (2021). Immuno-stimulatory effect and toxicology studies of salt pan bacteria as probiotics to combat shrimp diseases in aquaculture. Fish and Shellfish Immunology, 113: 69-78.
Fuandila N.N., Widanarni W., Yuhana M. (2020). Growth performance and immune response of prebiotic honey fed pacific white shrimp Litopenaeus vannamei to Vibrio parahaemolyticus infection. Journal of Applied Aquaculture, 32(3): 221-235.
Gao H.S., Hu R.M., Wang Z.H., Ye X.Q., Wu X.T., Huang J.H., Wang Z.Z., Chen X.X. (2022). A polydnavirus protein tyrosine phosphatase negatively regulates the host phenoloxidase pathway. Viruses, 15(1). https://doi.org/10.3390/v15010056
García-Hernández Y., Pérez-Sánchez T., Boucourt R., Balcázar J.L., Nicoli J.R., Moreira-Silva J., Rodriguez Z., Fuertes H., Nunez O., Albelo N. (2016). Isolation, characterization and evaluation of probiotic lactic acid bacteria for potential use in animal production. Research in Veterinary Science, 108: 125-132.
García-Solache M., Rice L.B. (2019). The Enterococcus: a Model of Adaptability to Its Environment. Clinical Microbiology Reviews, 32(2): e00058-18.
Gruber C., Bui-Chau-Truc D., Kesselring J.C., Nguyen N. D., Standen B., Wein S. (2023). Diet-independent positive effects of a multi-species probiotic on the growth performance and resistance against Vibrio parahaemolyticus in white leg shrimp. Animals, 13(3): 331.
Hernández-Cabanyero C., Carrascosa E., Jiménez S., Fouz B. (2023). Exploring the effect of functional diets containing phytobiotic compounds in whiteleg shrimp health: resistance to acute hepatopancreatic necrotic disease caused by Vibrio parahaemolyticus. Animals, 13(8): 1354.
Hernández-López J., Gollas-Galván T., Vargas-Albores F. (1996). Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 113(1): 61-66.
Hong N.T.X., Linh N.T.H., Baruah K., Thuy D.T.B., Phuoc N.N. (2022). The combined use of Pediococcus pentosaceus and fructooligosaccharide improves growth performance, immune response, and resistance of whiteleg shrimp Litopenaeus vannamei against Vibrio parahaemolyticus. Frontiers in Microbiology, 13.
Hong X., Lu L., Xu D. (2016). Progress in research on acute hepatopancreatic necrosis disease (AHPND). Aquaculture International, 24(2): 577-593.
Hossain A., Habibullah-Al-Mamun M., Nagano I., Masunaga S., Kitazawa D., Matsuda H. (2022). Antibiotics, antibiotic-resistant bacteria, and resistance genes in aquaculture: risks, current concern, and future thinking. Environmental Science and Pollution Research, 29(8): 11054-11075.
Huang H.-T., Hu Y.-F., Lee B.-H., Huang C.-Y., Lin Y.-R., Huan, S.-N., Chen Y.-Y., Chang J.-J., Nan F.-H. (2022). Dietary of Lactobacillus paracasei and Bifidobacterium longum improve nonspecific immune responses, growth performance, and resistance against Vibrio parahaemolyticus in Penaeus vannamei. Fish and Shellfish Immunology, 128: 307-315.
Huang M.-Y., Truong B. N., Nguyen T.P., Ju H.-J., Lee P.-T. (2024). Synergistic effects of combined probiotics Bacillus pumilis D5 and Leuconostoc mesenteroide B4 on immune enhancement and disease resistance in Litopenaeus vannamei. Developmental and Comparative Immunology, 155: 105158.
Iunes R.S., Branco, P.C., Pressinotti L.N., de Carvalho R.A.D.L., da Silva J.R.M. (2021). Does the heterotrophic system influence the cellular immune response of Litopenaeus vannamei shrimp? In vitro phagocytosis indices and superoxide anion production comparisons. Fish and Shellfish Immunology Reports, 2: 100009.
Ji P.-F., Yao C.-L., Wang Z.-Y. (2011). Reactive oxygen system plays an important role in shrimp Litopenaeus vannamei defense against Vibrio parahaemolyticus and WSSV infection. Diseases of Aquatic Organisms, 96(1): 9-20.
Jin Q., Wang Y., Yin H., Jiang H. (2023). Two clip-domain serine protease homologs, cSPH35 and cSPH242, act as a cofactor for prophenoloxidase-1 activation in Drosophila melanogaster. Frontiers in Immunology, 14: 1244792.
Kanjan P., Kimtun A., Chaimongkol S., Sakpetch P. (2022). Probiotic Weissella cibaria KY10 derived from digestive tract of healthy shrimp exhibits strong antibacterial effects against Vibrio parahaemolyticus causing AHPND in shrimp. Aquaculture Research, 53(7): 2597-2607.
Khouadja S., Haddaji N., Hanchi M., Bakhrouf A. (2017). Selection of lactic acid bacteria as candidate probiotics for Vibrio parahaemolyticus depuration in pacific oysters (Crassostrea gigas). Aquaculture Research, 48(4): 1885-1894.
Khushboo, Karnwal A., Malik T. (2023). Characterization and selection of probiotic lactic acid bacteria from different dietary sources for development of functional foods. Front Microbiol, 14: 1170725.
Khushi S.S., Sumon M.S., Ahmmed M.K., Zilani M.N.H., Ahmmed F., Giteru S.G., Sarower, M.G. (2022). Potential probiotic and health fostering effect of host gut-derived Enterococcus faecalis on freshwater prawn, Macrobrachium rosenbergii. Aquaculture and Fisheries, 7(1): 59-66.
Kim Y., Choi S.-I., Jeong Y., Kang C.-H. (2022). Evaluation of safety and probiotic potential of Enterococcus faecalis MG5206 and Enterococcus faecium MG5232 isolated from Kimchi, a Korean fermented cabbage. Microorganisms, 10(10): 2070.
Lambui O., Jannah M. (2017). Isolasi dan Identifikasi Bakteri Tanah di Hutan Sekitar Danau Kalimpa’a, Kawasan Taman Nasional Lore Lindu, Sulawesi Tengah. Natural Science: Journal of Science and Technology, 6(1).
Lee B.-H., Hu Y.-F., Chu Y.-T., Wu Y.-S., Hsu W.-H., Nan F.-H. (2024). Lactic acid bacteria-fermented diet containing bacterial extracellular vesicles inhibited pathogenic bacteria in striped beakfish (Oplegnathus fasciatus). Fermentation, 10(1): 49.
Li Y., Lu C., Yu Z., Ma Q. (2020). Isolation of Enterococcus faecium with Feeding Attractant Function from Pacific White Shrimp (Litopenaeus vannamei) Intestine. Journal of Ocean University of China, 19(4): 931-940.
Li Z., Junaid M., Chen G., Wang J. (2022). Interactions and associated resistance development mechanisms between microplastics, antibiotics and heavy metals in the aquaculture environment. Reviews in Aquaculture, 14(2): 1028-1045.
Lozano-Olvera R., Abad-Rosales S.M., Soto-Rodriguez S.A., Aguilar-Rendón K.G. (2023). Time course of acute hepatopancreatic necrosis disease (AHPND) in the Pacific white shrimp Penaeus vannamei by wet mount analysis. Aquaculture International, 32: 2313-2329.
Matti A., Utami T., Hidayat C., S. Rahayu E. (2019). Isolation, screening, and identification of proteolytic lactic acid bacteria from indigenous chao product. Journal of Aquatic Food Product Technology, 28(7): 781-793.
Maturin L., Peeler J.T. (2021). BAM Chapter 3: Aerobic Plate Count. In: Bacteriological Analytical Manual (BAM). Food and Drug Administration.
Mengal K., Kor G., Kozak P., Niksirat H. (2023). Effects of environmental factors on the cellular and molecular parameters of the immune system in decapods. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 276: 111332.
Mishra S., Das R., Choudhary P., Debbarma J., Sahoo S., Swain P., Rathore R., Giri B. (2017). Prevalence of fish and shrimp diseases and use of various drugs and chemicals in Indian aquaculture for disease management. Journal of Fisheries and Aquaculture Development, 2017(6): 1-16.
Monier M.N., Kabary H., Elfeky A., Saadony S., El-Hamed N.N.B.A., Eissa M.E.H., Eissa E.-S.H. (2023). The effects of Bacillus species probiotics (Bacillus subtilis and B. licheniformis) on the water quality, immune responses, and resistance of whiteleg shrimp (Litopenaeus vannamei) against Fusarium solani infection. Aquaculture International, 31(6): 3437-3455.
Mubarak Z., Soraya C. (2018). The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia. F1000Research, 7: 287.
Nimrat S., Khaopong W., Sangsong J., Boonthai T., Vuthiphandchai V. (2020). Improvement of growth performance, water quality and disease resistance against Vibrio harveyi of postlarval whiteleg shrimp (Litopenaeus vannamei) by administration of mixed microencapsulated Bacillus probiotics. Aquaculture Nutrition, 26(5): 1407-1418.
Ntakirutimana R., Syanya F.J., Mwangi P. (2023). Exploring the Impact of Probiotics on the Gut Ecosystem and Morpho-Histology in Fish: Current Knowledge of Tilapia. Asian Journal of Fisheries and Aquatic Research, 25(3): 93-112.
Peng M., Zhang Y., Song Z. (2019). Isolation and characterization of a Bacillus spp. against Vibrio Parahaemolyticus from shrimp culture ponds. International Journal of Microbiology and Biotechnology, 4: 29-37.
Prabhurajeshwar C., Chandrakanth K. (2019). Evaluation of antimicrobial properties and their substances against pathogenic bacteria in-vitro by probiotic Lactobacilli strains isolated from commercial yoghurt. Clinical Nutrition Experimental, 23: 97-115.
Proespraiwong P., Mavichak R., Imaizumi K., Hirono I., Unajak S. (2023). Evaluation of Bacillus spp. as potent probiotics with reduction in AHPND-related mortality and facilitating growth performance of Pacific white shrimp (Litopenaeus vannamei) farms. Microorganisms, 11(9): 2176.
Purbomartono C., Emawati R., Mulia D.S., Haryanto H. (2023). The effectiveness of dietary fucoidan compared to the combination of fucoidan with turmeric on the growth of African catfish (Clarias Gariepinus). Proceedings Series on Social Sciences and Humanities, 8: 17-23.
Qyli M., Aliko V., Faggio C. (2020). Physiological and biochemical responses of Mediterranean green crab, Carcinus aestuarii, to different environmental stressors: Evaluation of hemocyte toxicity and its possible effects on immune response. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 231: 108739.
Ragland S.A., Criss A.K. (2017). From bacterial killing to immune modulation: Recent insights into the functions of lysozyme. PLoS pathogens, 13(9): e1006512.
Restrepo L., Domínguez-Borbor C., Bajaña L., Betancourt I., Rodríguez J., Bayot B., Reyes A. (2021). Microbial community characterization of shrimp survivors to AHPND challenge test treated with an effective shrimp probiotic (Vibrio diabolicus). Microbiome, 9: 1-20.
Risna Y., Sri-Harimurti S.-H., Wihandoyo W., Widodo W. (2022). Kurva Pertumbuhan Isolat Bakteri Asam Laktat dari Saluran Pencernaan Itik Lokal Asal Aceh. Jurnal Peternakan Indonesia (Indonesian Journal of Animal Science), 24(1): 1-7.
Santos H.M., Tsai C.-Y., Maquiling K.R.A., Tayo L.L., Mariatulqabtiah A.R., Lee C.-W., Chuang K.P. (2020). Diagnosis and potential treatments for acute hepatopancreatic necrosis disease (AHPND): a review. Aquaculture International, 28(1): 169-185.
Saputra A., Maftuch M., Andayani S., Yanuhar U. (2023). Pathogenicity of Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease (AHPND) in shrimp (Litopanaeus vannamei) in Serang, Banten, Indonesia. Biodiversitas Journal of Biological Diversity, 24(4).
Seethalakshmi P., Rajeev R., Kiran G.S., Selvin J. (2021). Shrimp disease management for sustainable aquaculture: innovations from nanotechnology and biotechnology. Aquaculture International, 29: 1591-1620.
Shinn A.P., Pratoomyot J., Griffiths D., Trong T.Q., Vu N.T., Jiravanichpaisal P., Briggs M. (2018). Asian shrimp production and the economic costs of disease. Asian Fisheries Science, 31: 29-58.
Skrzyniarz K., Sanchez-Nieves J., de la Mata F.J., ?ysek-G?adysi?ska M., Lach K., Ciepluch K. (2023). Mechanistic insight of lysozyme transport through the outer bacteria membrane with dendronized silver nanoparticles for peptidoglycan degradation. International Journal of Biological Macromolecules, 237: 124239.
Sorée M., Kolypczuk L., Hadjiev E., Lozach S., Verrez-Bagnis V., Delbarre-Ladrat C., Heath D.H., Passerini D. (2022). Screening of marine lactic acid bacteria for Vibrio parahaemolyticus inhibition and application to depuration in Pacific oysters (Crassostrea gigas). Journal of Applied Microbiology, 134(2): lxac081
Stanley D., Haas E., Kim Y. (2023). Beyond cellular immunity: on the biological significance of insect hemocytes. Cells, 12(4): 599.
Subagiyo S., Triyanto T., Margino S., Setiawan F., Setyati W.A., Pramesti R. (2017). Aktivitas Antibakteri Isolat Bakteri Asam Laktat Intestinal Udang Penaeid Tipe Liar Terhadap Bakteri Vibrio. Jurnal Kelautan Tropis, 20(1): 7-15.
Swain S.M., Singh C., Arul V. (2009). Inhibitory activity of probiotics Streptococcus phocae PI80 and Enterococcus faecium MC13 against Vibriosis in shrimp Penaeus monodon. World Journal of Microbiology and Biotechnology, 25(4): 697-703.
Tank P., Vadher K., Patel M. (2018). Effect of salinity on growth performance of probiotics for its potential use in shrimp aquaculture.
Torres-Maravilla E., Parra M., Maisey K., Vargas R.A., Cabezas-Cruz A., Gonzalez A., Tello M., Bermúdez-Humarán, L. G. (2024). Importance of Probiotics in Fish Aquaculture: Towards the Identification and Design of Novel Probiotics. Microorganisms, 12(3).
Ulfa R.F. (2018). Analysis of cadmium levels in water and sediments of the Lesti River, Malang Regency, using the atomic absorption spectroscopy (AAS) method, Universitas Islam Negeri Maulana Malik Ibrahim. Malang.
Uyen P.T.T., An N.H., Hai P.T., Ha B.T.V. (2021). Cholesterol-lowering Potential and Exopolysaccharide Biosynthesis of Lactobacillus spp. isolated from Human Milk. VNU Journal of Science: Natural Sciences and Technology, 37: 4DO.
Wang Z., Luo J., Feng K., Zhou Y., Tang F. (2022). Prophenoloxidase of Odontotermes formosanus (Shiraki)(Blattodea: termitidae) is a key gene in melanization and has a defensive role during bacterial infection. International Journal of Molecular Sciences, 24(1): 406.
Weckwerth P.H., Zapata R.O., Vivan R.R., Tanomaru Filho M., Maliza A.G., Duarte M.A. (2013). In vitro alkaline pH resistance of Enterococcus faecalis. Braz Dent J, 24(5): 474-476.
Wu C.-C., Chang Y.-P., Wang J.-J., Liu C.-H., Wong S.-L., Jiang C.-M., Hsieh S.-L. (2015). Dietary administration of Gynura bicolor (Roxb. Willd.) DC water extract enhances immune response and survival rate against Vibrio alginolyticus and white spot syndrome virus in white shrimp Litopeneaus vannamei. Fish and Shellfish Immunology, 42(1), 25-33.
Wu T., Hu X., Xu W., Du Y., Chen J. (2024). Effect of dietary supplement of inactivated Lactobacillus plantarum Ep-M17 on growth performance, immune response, disease resistance, and intestinal microbiota in Penaeus vannamei. Journal of Oceanology and Limnology, 42(2): 676-694.
Yang E., Fan L., Yan J., Jiang Y., Doucette C., Fillmore S., Walker B. (2018). Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express, 8(1): 10.
Zuo Z.-H., Shang B.-J., Shao Y.-C., Li W.-Y., Sun J.-S. (2019). Screening of intestinal probiotics and the effects of feeding probiotics on the growth, immune, digestive enzyme activity and intestinal flora of Litopenaeus vannamei. Fish and Shellfish Immunology, 86: 160-168.
Copyright (c) 2025 International Journal of Aquatic Biology

This work is licensed under a Creative Commons Attribution 4.0 International License.







