Polycyclic aromatic hydrocarbons (PAHs) in sediment and two tilapia fish species with the health risk of their consumption of the Shatt Al-Arab River, Basrah, Iraq
Downloads
PAHs are toxic pollutants that endanger human health and the environment. This study aimed to assess the PAH levels in sediment and two tilapia species of Oreochromis niloticus and Coptodon zillii in the Shatt Al-Arab River along the Basrah City, southern Iraq, from May to October 2021. In addition, the risk to human health from fish was calculated using dietary daily intake and the carcinogenic potencies of PAH concentrations. Sixteen PAH congeners were found in sediment and fish samples. The total PAH concentrations in sediment and fish samples ranged from 37.46 to 76.33 µg/g dry weight and 23.55 to 55.81 µg/g wet weight. The total concentration pattern of PAHs was as follows: Sediment > O. niloticus > C. zillii. PAH levels in the fish's dietary intake were 0.00866 mg/kg body weight/day for 8 PAHs and 0.01288 mg/kg body weight/day for 16 PAHs, respectively. The TEQ (0.0025888 mg/kg body weight/day) exceeded the SV (0.677 ng/g wet weight) of the USEPA.
Downloads
Advaiti B., Shanta S., Abhijit D. (2013). Bioaccumulation kinetics and bioconcentration factors for polycyclic aromatic hydrocarbons in tissues of Rasbora daniconius. International Journal of Chemical Physics, 2: 82-94.
Akinsanya B., Ayanda I.O., Onwuka B., Saliu J.K. (2020). Bioaccumulation of BTEX and PAHs in Heterotis niloticus (Actinopterygii) from the Epe Lagoon, Lagos, Nigeria. Heliyon, 6(2020): e03272.
Alani R., Drouillard K., Olayinka K., Alo B. (2012). Bioaccumulation of polycyclic aromatic hydrocarbons in fish and invertebrates of Lagos Lagoon, Nigeria. Journal of merging Trends in Engineering and Applied Science, 3: 287-296.
Al-Atbee R.S.K. (2018). Assessment of some heavy elements and hydrocarbons in the water, sediments and dominant aquatic plants at Al-Chibayish marshes. M.Sc. thesis, College of Science, University of Basrah. 207 p.
Al-Hijaj M.H., Talal A.A., Hantoush A.A. (2019). Polycyclic aromatic hydrocarbons (PAHs) in waters from northern part of Shatt Al-Arab River, Iraq. Marsh Bulletin, 14(1): 11-21.
Al-Saad H., Farid W., Abdul-Ameer W. (2019). Distribution and sources of polycyclic aromatic hydrocarbons in soils along the Shatt Al-Arab River delta in southern Iraq. Soil and Water Research, 14(2): 84-93.
AOAC (Association of Officiating Analytical Chemists) (2005). Official method of analysis. 18th edition, Association of Officiating Analytical Chemists, Washington DC, xxviii P.
Awe A.A., Opeolu B.O., Olatunji O.S., Fatoki O.S., Jackson V.A., Snyman R. (2020). Occurrence and probabilistic risk assessment of PAHs in water and sediment samples of the Diep River, South Africa, Heliyon, 6: e04306.
Çiçek E., Jawad L., Eagderi S., Esmaeili H.R., Mouludi-Saleh A., Sevil Sungur S., Ronald Fricke R. (2023). Freshwater fishes of Iraq: a revised and updated annotated checklist—2023. Zootaxa, 5357(1): 1-49.
Coad B.W. (2010). Freshwater fishes of Iraq. Pensoft Publishers, Sofia-Moscow. 294 p.
Collier T.K., Anulacion B.F., Arkoosh M.R. Dietrich J.P.; Incardona J.P., Johnson L.L., Ylitalo G.M., Myers M.S. (2013). Effects of polycyclic aromatic hydrocarbons (PAHS) and naphthenic acid exposures on fish. Fish Physiology, 33: 195-255.
Dhananjayan V., Muralidharan S. (2012). Polycyclic aromatic hydrocarbons in various species of fishes from Mumbai harbour, India, and their dietary intake concentration to human. International Journal of Oceanography, 645178.
Eagderi S., Mojazi Amiri B., Adriaens D. (2013). Description of the ovarian follicle maturation of the migratory adult female bulatmai barbel (Luciobarbus capito, Guldenstadt 1772) in captivity. Iranian Journal of Fisheries Sciences, 12(3): 550-560.
Effiong I.A., Bassey F.I., Iwegbue C., Ekpa O.D., Williams S.A., Oguntunde F.C., Osabor V.N., Martincigh B.S. (2016). Polycyclic aromatic hydrocarbons in three commercially available fish species from the Bonny and Cross River estuaries in the Niger Delta, Nigeria. Environmental Monitoring and Assessment, 188(9): 1-17.
Evans D.H., Piermarini P.M., Choe K.P. (2005). The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews, 85: 97-177.
Falcó G., Bocio A., Llobet J.M., Domingo J.L. (2006). Health risks of dietary intake of environmental pollutants by elite sportsmen and sportswomen. Food and Chemical Toxicology, 43(12): 1713-1721.
Farid W. (2017). Assessment of aliphatic hydrocarbons in sediments of Shatt Al-Arab River, Southern Iraq, North East Arabian Gulf. American Journal of Environmental Sciences, 13(6): 398-411.
Farid W.A., Ali W.A., Al-Salman A.N. (2020). Contamination of Polynuclear Aromatic Hydrocarbons- (PNAH) in Sediments: Identification and Distribution in the River of Shatt Al-Arab-(ROSA). Indian Journal of Forensic Medicine and Toxicology, 14(4): 677-683.
Fernandes M.N., Mazon F. (2003). Environmental pollution and fish gill morphology. In: V.L. Val, B.G. Kapoor (Eds.), Fish adaptations, Science Publishers, Enfield. pp: 203-231.
Gobinath J., Ramanibai R. (2014). Histopathological studies in the gill, liver and kidney of the freshwater fish Labeo rohita Fingerlings. International Journal of Innovative Research in Science, Engineering and Technology, 3(3): 10296.
Gupta E., Bhalla P., Khurana N., Singh T. (2009). Histopathology for the diagnosis of infectious diseases. Indian Journal of Medical Microbiology, 27(2): 100-106.
Hedayati A. (2016). Liver as a target organ for eco-toxicological studies. Journal of Coastal Zone Management, 19(3): 1000e118.
Honda M., Suzuki N. (2020). Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. International Journal of Environmental Research and Public Health, 17: 1363.
Hug M.F., Al-Saadi H.A., Hamed H.A. (1978). Phytoplankton ecology of Shatt Al-Arab river at Basrah, Iraq. Verhandlungen Internationalen Verein Limnologie, 20: 1552-1556.
Hwang P., Lee T., Lin L. (2011). Ion regulation in fish gills: recent progress in the cellular and molecular mechanisms. The American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 301: R28-R47.
Javed M., Usmani N. (2019). An overview of the adverse effects of heavy metal contamination on fish health. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89(2): 389-403.
Jesus F., Pereira J.L., Campos I., Santos M., Ré A., Keizer J., Nogueira A., Gonçalves F.J.M., Abrantes N., Serpa D. (2020). A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna. Science of the Total Environment, 820: 153282.
Kandasamy R. (2011). Histopathological study on the effect of rice herbicides on grass carp (Ctenopharyngodan idella). African Journal of Biotechnology, 10(7): 1112-1116.
Keith L.H. (2015). The source of US EPA's sixteen PAH priority pollutants. Polycyclic Aromatic Compounds, 35: 147-160.
Kere N.R., Yakubu N.M., Oparanozie T., Ihedioha J.N. (2019). Levels and risk assessment of polycyclic aromatic hydrocarbons in water and fish of Rivers Niger and Benue confluence Lokoja, Nigeria. Journal of Environmental Health Science and Engineering, 17(1): 383-392.
Larsen J.C., Larsen P.B. (1998). Chemical carcinogens. In: R.E. Hester, R.M. Harrison (Eds.), Air pollution and health. Cambridge, UK, Royal Society of Chemistry. pp: 33-56.
Lee Y.Y., Hsieh Y.K., Huang B.W., Mutuku J.K., Chang-Chien G.P., Huang S. (2022). An overview: PAH and Nitro-PAH emission from the stationary sources and their transformations in the atmosphere. Aerosol and Air Quality Research, 22(7): 220164.
Mabika N., Barson M. (2013). Histological assessment of gill pathology in two fish species (Clarias gariepinus and Oreochromis niloticus) from the Sanyati Basin in Lake Kariba, Zimbabwe. International Journal of Development and Sustainability, 2(2): 1476-1486.
Martorell I., Perelló G., Martí-Cid R., Castell V., Llobet J.M., Domingo J.L. (2010). Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend. Environment International, 36(5): 424-432.
McGrath J.A., Joshua N., Bess A.S., Parkerton T.F. (2019). Review of Polycyclic Aromatic Hydrocarbons (PAHs) Sediment Quality Guidelines for the protection of benthic life. Integrated Environmental Assessment and Management, 15(4): 505-518.
Melo P.T.S., Torres J.P.M., Ramos L.R.V., Fogaça F.H.S., Massone C.G., Carreira R.S. (2022). PAHs impacts on aquatic organisms: contamination and risk assessment of seafood following an oil spill accident. Annals of the Brazilian Academy of Sciences, 94(Suppl. 2): e20211215.
Miranda A.L., Roche H., Randi M., D.E., Menezes M.L. (2008). Bioaccumulation of chlorinated pesticides and PCBs in the tropical freshwater fish Hoplias malabaricus: Histopathological, physiological, and immunological findings. Environment International, 34(7): 939-949.
Muthukumar A., Idayachandiran G., Kumaresan S., Kumar T.A., Balasubramanian T. (2013). Petroleum hydrocarbons (PHC) in sediments of three different ecosystems from Southeast Coast of India. International Journal of Pharmaceutical and Biological Science Archive, 4: 543-549.
Niu X., Ho S.S.H., Ho K.F., Huang H., Sun J., Wang Q., Zhou Y., Zhao Z., Cao J. (2017). Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing-Tianjin-Hebei region. Environmental Pollution, 231: 1075-1084.
Nozar S.L.M., Ismail W.R., Zakaria M.P. (2013). Residual Concentration of PAHs in Seafood from Hormozgan Province, Iran: Human Health Risk Assessment for Urban Population. International Journal of Environmental Science and Development, 4(4): 393- 397.
Nwaichi E.O., Ntorgbo S.A. (2016). Assessment of PAHs levels in some fish and seafood from different coastal waters in the Niger Delta. Toxicology Reports, 3: 167-172.
Obiakor M.O., Okonkwo J.C., Ezeonyejiaku C.D., Okonkwo C.N. (2014). Polycyclic aromatic hydrocarbons (PAHs) in freshwater media: factorial effects and human dietary exposure risk assessment. Resources and Environmental Economics, 4(6): 247-259.
Okpashi V.E., Ogugua V.N., Ubani S.C., Ujah I.I., Ozioko J.N. (2017). Estimation of residual polycyclic aromatic hydrocarbons concentration in fish species: Implication in reciprocal corollary. Cogent Environmental Science, 3(1): 1303979.
Olayinka O.O., Adewusi A.A., Olujimi O.O., Aladesida A.A. (2019). Polycyclic aromatic hydrocarbons in sediment and health risk of fish, crab and shrimp around Atlas Cove, Nigeria. Journal of Health and Pollution, 9(24): 1-21.
Ololade I.A., Lajide L.O., Amoo I.A. (2008). Occurrence and toxicity of hydrocarbon residues in crab (Callinectes sapidus) from contaminated site. Journal Applied Sciences and Environmental Management, 12(4): 19-23.
Patel A.B., Shaikh S., Jain K.R., Desai C., Madamwar D. (2020). Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Frontiers in Microbiology, 11: 562813.
Patrolecco L., Ademollo N., Capri S., Pagnotta R., Polesello S. (2010). Occurrence of priority hazardous PAHs in water, suspended particulate matter, sediment and common eels (Anguilla anguilla) in the urban stretch of the River Tiber (Italy). Chemosphere, 81(11): 1386-1392.
Ravindra K., Sokhi R., Van Grieken R. (2008). Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13): 2895-2921.
Rose A., Ken D., Kehinde O., Babajide A. (2012). Bioaccumulation of polycyclic aromatic hydrocarbons in fish and invertebrates of Lagos Lagoon, Nigeria. Journal of Emerging Trends in Engineering and Applied Sciences, 3(2): 287-296.
Saad M.A.H., Kell V. (1975). Observation on some environmental conditions as well as phytoplankton blooms in the tower reaches of Tigris and Euphrates. Wiss Zeitscher University Restock, 24: 781-787.
Safahieh A., Hedayati A., Savari A., Movahedinia A. (2012). Effect of sublethal dose of mercury toxicity on liver cells and tissue of yellowfin seabream. Toxicology and Industrial Health, 28(7): 583-592.
Santana M.S., Sandrini-Neto L. Neto F.F., Ribeiro C.A.O., Di Domenico M., Prodocimo M.M. (2018). Biomarker responses in fish exposed to polycyclic aromatic hydrocarbons (PAHs): Systematic review and meta-analysis. Environmental Pollution, 242: 449-461.
Shah N., Khan A., Ali R., Marimuthu K., Uddin M.N., Rizwan M., Rahman K.U., Alam M., Adnan M., Muhammad Jawad S.M., Hussain S., Khisroon M. (2020). Monitoring Bioaccumulation (in Gills and Muscle Tissues), Hematology, and Genotoxic Alteration in Ctenopharyngodon idella Exposed to Selected Heavy Metals. Biomed Research International, 2020: 6185231.
Shahida S., Sultanaa T., Sultanaa S., Hussaina B., Irfana M., Al-Ghanimb K.A., A-Misnedb F., Mahbooba S. (2021). Histopathological alterations in gills, liver, kidney and muscles of Ictalurus punctatus collected from polluted areas of River. Brazilian Journal of Biology, 81(3): 814-821.
Silva B.O., Adetunde O.T., Oluseyi T.O., Olayinka K.O., Alo B.I. (2011). Effects of the methods of smoking on the levels of polycyclic aromatic hydrocarbons (PAHs) in some locally consumed fishes in Nigeria. African Journal of Food Science, 5: 384-391.
Siudek P. (2022). Atmospheric deposition of Polycyclic Aromatic Hydrocarbons (PAHs) in the coastal urban environment of Poland: Sources and transport patterns. International Journal of Environmental Research and Public Health, 19: 14183.
Tolosa I., De Mora S., Sheikholeslami M.R., Villeneuve J.P., Bartocci J., Cattini C. (2004). Aliphatic and aromatic hydrocarbons in coastal Caspian Sea. Marine Pollution Bulletin, 48: 44-60.
Tongo I., Ogbeide O., Ezemonye L. (2017). Human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in smoked fish species from markets in Southern Nigeria. Toxicology reports, 4: 55-61.
Tronosco I.C., Cazenave J., Bacchetta C., Bistoni M.A. (2012). Histopathological changes in the gills and liver of Prochilodus lineatus from the Salado River basin (Santa Fe, Argentina). Fish Physiology and Biochemistry, 38: 693-702.
UNEP (United Nations Environment Programme) (2002). Regionally based assessment of persistent toxic substances: Europe regional report/United Nations Environment Programme, Chemicals, Global Environment Facility. Europe RBA PTS regional report, Inter-Organization Programme for the Sound Management of Chemicals, Geneva, UNEP/ CHEMICALS/2003/3. 141 p.
USEPA (United States Environmental Protection Agency) (2002). Polycyclic organic matter (POM). Environmental protection agency, Washington, DC., USA, Available at: http://www.epa.gov/ttn/atw/hlthef /polycycl.html.
USEPA (United States Environmental Protection Agency) (1996). Method 3630C: Silica gel cleanup. In: Test methods for evaluating solid waste: Physical/chemical methods. United States Environmental Protection Agency, December, 1996, Washington DC. 15 p.
Uyar B. (2020). Aquatic foods in food-based dietary guidelines around the world. M.Sc. Internship Report. Wageningen, the Netherlands: Wageningen University and World Fish. Mimeo.
Wang W.Y., Zhang J., Li X.F., Li Y.X., Hou H., Wang L.Q., Li F.S. (2015). Characteristics and sources of polycyclic aromatic hydrocarbons pollution in water of Xi’an outskirt regions. Agricultural Research in the Arid Areas, 33: 201-206.
Wang Z., Li J., Lu L., Cao J., Zhao L., Luan S. (2021). Source, partition and ecological risk of polycyclic aromatic hydrocarbons in Karst Underground River environment, Southern China. Water, 13: 2655.
Weber A.A., Sales C.F., de Souza Faria F., Melo R.M.C., Bazzoli N., Rizzo E. (2020). Effects of metal contamination on liver in two fish species from a highly impacted neotropical river: A case study of the Fundão dam, Brazil. Ecotoxicology and Environmental Safety, 190: 110165.
White J.C., Triplett T. (2002). Polycyclic aromatic hydrocarbons (PAHs) in the sediments and fish of the Mill River, NewHaven, Connecticut, USA.
Wu W., Ning Qin N., He W., He Q., Ouyang H., Xu F. (2012). Levels, distribution, and health risks of polycyclic aromatic hydrocarbons in four freshwater edible fish species from the Beijing market. The Scientific World Journal, 2012: 1-12.
Wu Y., Zhang J., Mi T.Z., Li B. (2001). Occurrence of n-alkanes and polycyclic aromatic hydrocarbons in the core sediments of the Yellow Sea. Marine Chemistry, 76: 1-15.
Yang Z.F., Wang L.L., Niu J.F., Wang J.Y., Shen Z.Y. (2009). Pollution assessment and source identifications of polycyclic aromatic hydrocarbons in sediments of the Yellow River Delta, a newly born wetland in China. Environmental Monitoring and Assessment. 158: 561-571.
Zelinkova Z., Wenzl T. (2015). The occurrence of 16 EPA PAHs in food-A review. Polycyclic Aromatic Compounds, 35: 248-284.
Zhao Z., Zhang L., Cai Y., Chen Y. (2014). Distribution of polycyclic aromatic hydrocarbon (PAH) residues in several tissues of edible fishes from the largest freshwater lake in China, Poyang Lake, and associated human health risk assessment. Ecotoxicology and EnvironmentalSafety,104: 323-331.
Zrafi I., Bakhrouf A., Rouabhia M., Saidane-Mosbahi D. (2013). Aliphatic and aromatic biomarkers for petroleum hydrocarbon monitoring in Khniss Tunisian-coast, (Mediterranean Sea). Procedia Environmental Sciences, 18: 211-220.
Copyright (c) 2024 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.