Indigenous techno-vention to promote periphyton-based aquaculture
Downloads
Considering the increasing demand for aquaculture production, semi-intensive and intensive cultures have already been established, but with enhanced cost of supplementary and complete feed and associated incidence of water quality deterioration due to accumulated nutrient loss, an alternative approach of periphyton-based aquaculture has been initiated. Periphyton-based aquaculture is a low-cost culture technique with less feed input and has been reported to support the high production of most cultured fish species. Apart from this, an improved level of water quality in periphyton-based aquaculture has also been reported. Even considering these advantages, periphyton-based aquaculture has not been implemented on a huge scale due to one major disadvantage: the stationary nature of the substrate on which the biofilm grows. For this reason, partial harvesting of the stock or regular management practices of the cultured pond is impossible as these require complete removal of the substrates. To solve this problem, a model with indigenous technical intervention has been proposed where any substrate, bio-degradable or non-biodegradable so far, used for periphyton-based aquaculture can be used. Though this model is handy using bamboo poles and split bamboos; other components like crushed sugarcane bagasse, paddy straw, and PVC pipes can also be incorporated into it.
Downloads
Abakari G., Luo G., Kombat E.O. (2020). Dynamics of nitrogenous compounds and their control in biofloc technology (BFT) systems: A review. Aquaculture and Fisheries, 6(5): 441-447.
Amisah S., Adjei-boateng D., Afianu D. (2008). Effects of bamboo substrate and supplementary feed on growth and production of the African catfish (Clarias gariepinus). Journal of Applied Sciences and Environmental Management, 12(2): 25-28.
Azim M.E., Wahab M.A., van Dam A.A., Beveridge M.C.M., Verdegem M.C.J. (2001a). The potential of periphyton-based culture of two Indian major carps, rohu Labeo rohita (Hamilton) and gonia Labeo gonius (Linnaeus). Aquaculture Research, 32(3): 209-216.
Azim M.E., Wahab M.A., Van Dam A.A., Beveridge M.C.M., Huisman E.A., Verdegem M.C.J. (2001b). Optimization of stocking ratios of two Indian major carps, rohu (Labeo rohita Ham.) and catla (Catla catla Ham.) in a periphyton-based aquaculture system. Aquaculture, 203(1-2): 33-49.
Azim M.E., Wahab M.A., Verdegam M.C.J., Van Dam A.A., Van Rooij J.M., Beveridge M.C.M. (2002a). The effects of artificial substrates on freshwater pond productivity and water quality and the implications for periphyton-based aquaculture. Aquatic Living Resources, 15(4): 231-241.
Azim M.E., Verdegem M.C.J., Khatun H., Wahab M.A., Van Dam A.A., Beveridge M.C.M. (2002b). A comparison of fertilization, feeding and three periphyton substrates for increasing fish production in freshwater pond aquaculture in Bangladesh. Aquaculture, 212(1-40): 227-243.
Azim M.E., Verdegem M.C.J., Rahman M.N., Wahab M.A., Van Dam A.A., Beveridge M.C.M. (2002c). Evaluation of polyculture of Indian major carps in periphyton-based ponds. Aquaculture, 213: 131-149.
Azim M.E., Wahab M.A., Biswas P.K., Asaeda T., Fujino T., Verdegem M.C.J. (2004a). The effect of periphyton substrate density on production in freshwater polyculture ponds. Aquaculture, 232: 441-453.
Azim M.E., Rahman M.M., Wahab M.A., Asaeda T., Little D.C., Verdegem M.C.J. (2004b). Periphyton-based pond polyculture system: a bioeconomic comparison of on-farm and on-station trials. Aquaculture, 242: 381-396.
Azim M.E., Verdegem M.C.J., Van Dam A.A., Beveridge M.C.M. (2005). Periphyton: Ecology, Exploitation and Management, CAB International, UK. 319 p.
Bharti V., Pandey P.K., Vennila A., Rajkumar M., Ajima M.N.O. (2016). Water quality, survival and growth performance of Cirrhinus mrigala (Hamilton 1822) in substrate based tanks. Asian Fisheries Science, 29: 137-150.
De Silva S.S., Anderson T.A. (1995). Fish nutrition in aquaculture, Chapman and Hall, London, UK. 320 p.
Dempster P.W., Beveridge M.C.M., Baird D.J. (1993). Herbivory in tilapia Oreochromis niloticus (L.): a comparison of feeding rates on periphyton and phytoplankton. Journal of Fish Biology, 43(3): 385-392.
Dempster P.W., Baird D.J., Beveridge M.C.M. (1995). Can fish survive by filter-feeding on microparticles? Energy balance in tilapia grazing on algal suspensions. Journal of Fish Biology, 47(1): 7-17.
Dharmaraj M., Manissery J.K., Keshavnath P. (2002). Effects of a biodegradable substrate, sugarcane bagasse and supplementary feed on growth and production of fringe lipped peninsular carp, Labeo fimbriatus (Bloch). Acta Ichthyologica et Piscatoria, 32(2): 137-144.
Dutta M.P., Phukan B., Baishya S., Hussain I.A., Kashyap D., Deka P., Roy S. (2013). Comparative Study of periphyton growth on two different substrates (palm leaf and nylon net). Environment and Ecology, 31(4): 1725-1731.
Gangadhar B., Keshavanath P. (2008). Planktonic and biochemical composition of periphyton grown on some biodegradable and non-degradable substrates. Journal of Applied Aquaculture, 20: 213-232.
Gangadhar B., Keshavanath P. (2012). Growth performance of rohu, Labeo rohita (Ham.) in tanks provided with different levels of sugarcane bagasse as periphyton substrate. Indian Journal of Fisheries, 59(3): 77-82.
Gangadhar B., Sridhar N., Saurabh S., Raghavendra C.H., Raghunath M.R., Hemaprasanth. (2015). Influence of periphyton based culture systems on growth performance of fringe-lipped carp Labeo fimbriatus (Bloch, 1795) during fry to fingerling rearing. Indian Journal of Fisheries, 62(3): 118-123.
Garg S.K., Kumar A., Arasu A.R.T., Bhatnagar A., Jana S.N., Barman U.K. (2007). Effect of periphyton and supplementary feeding on growth performance and some aspects of nutritive physiology of Nile Tilapia, Oreochromis niloticus and Pearlspot, Etroplus suratensis under polyculture. Journal of Applied Aquaculture, 19: 19-45.
Gross A., Boyd C.E., Wood C.W. (2000). Nitrogen transformation and balance in channel catfish ponds. Aquacultural Engineering, 24(1): 1-14.
Hem S., Avit J.L.B. (1994). First results on `acadja-enclos' as an extensive aquaculture system (West Africa). Fifth International Conference on Aquatic Habitat Enhancement, 55: 1038-1049.
Henriksson P.J.G., Belton B., Jahan K.M., Rico A. (2018). Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle assessment. Proceedings of the National Academy of Sciences, 115(12): 2958-2963.
Jha S., Rai S., Shrestha M., Diana J. (2018). Production of periphyton to enhance yield in polyculture ponds with carps and small indigenous species. Aquaculture Reports, 9: 74-81.
Kaviyarasan K., Athithan S. (2019). Evaluation of periphyton quantity on different natural substrates in freshwater. Agricultural Science Digest, 39(3): 250-253.
Keshavnath P., Gangadhar B., Ramesh T.J., Van Rooij J.M., Beveridge M.C.M., Baird D.J., Verdegem M.C.J., Van Dam A.A. (2001). Use of artificial substrates to enhance production of freshwater herbivorous fish in pond culture. Aquaculture Research, 32(3): 189-197.
Keshavanath P., Gangadhar T., Ramesh B.J., Van Dam A.A., Beveridge M.C.M., Verdegem M.C.J. (2002). The effect of periphyton and supplemental feeding on the production of the indigenous carps Tor khudree and Labeo fimbriatus. Aquaculture, 213(1-4): 207-218.
Keshavanath P., Manissery J.K., Ganapathi Bhat A., Gangadhar, B. (2012). Evaluation of four biodegradable substrates for periphyton and fish production. Journal of Applied Aquaculture, 24: 60-68.
Krishnani K.K., Kathiravan V., Meena K.K., Sarkar B., Kumar S., Brahmane M.P., Kumar N., Kailasam M. (2019). Bioremediation of aquatic toxicants: Application of multi-omic approaches. Advances in Fish Research, 7: 371-398.
Li Z., Wang G., Yu E., Zhang K., Yu D., Gong W., Xie J. (2019). Artificial substrata increase pond farming density of grass carp (Ctenopharyngodon Idella) by increasing the bacteria that participate in nitrogen and phosphorus cycles in pond water. Peer J, 7: e7906.
Liu J., Wang F., Wu W., Wan J., Yang J., Xiang S., Wu Y. (2018). Biosorption of high-concentration cu (II) by periphytic biofilms and the development of a fiber periphyton bioreactor (FPBR). Bioresource Technology, 248(Part B): 127-134.
Mai Y.Z., Peng S.Y., Lai Z.N. (2020). Structural and functional diversity of biofilm bacterial communities along the Pearl River estuary, South China. Regional Studies in Marine Science, 33: 100926.
Mansour E.M.G., El-Said S.M.A., Al-Kenawy D.A. (2017). Evaluation of phytoplankton diversity in periphyton based aquaculture system. Egyptian Journal of Phycology, 18(1): 59-75.
Miller M.W., Falace A. (2000). Evaluation methods for trophic resource factors - nutrients, primary production, and associated assemblages. In: Seaman Jr., W. (Ed.), Artificial Reef Evaluation with Application to Natural Marine Habitats, CRC Press. pp: 95-126.
Mohapatra B.C., Sahu H., Mahanta S.K., Lenka S., Anantharaja K., Jayasankar P. (2016). Growth of periphyton on different plastic materials in freshwater medium. Advances in Applied Science Research, 7(4): 228-234.
Mridula R.M., Manissary J.K., Keshavanath P., Shankar K.M., Nandeesha M.C., Rajesh K.M. (2003). Water quality, biofilm production and growth of fringe-lipped carp (Labeo fimbriatus) in tanks provided with two solid substrates. Bioresource Technology, 87(3): 263-267.
Mridula R.M., Manissary J.K., Keshavnath P., Shankar K.M., Nandeesha M.C., Rajesh K.M. (2005). Effects of paddy straw and sugarcane bagasse on water quality, bacterial biofilm production and growth and survival of rohu, Labeo rohita (Hamilton). Aquaculture Research, 36: 635-642.
Munguti J., Obiero K., Orina P., Mirera D., Kyule D., Mwaluma J., Opiyo M., Musa S., Ochiewo J., Njiru J., Ogello E., Hagiwara A. (2021). State of aquaculture report 2021: Towards nutrition sensitive fish food production systems. Techplus Media House, Kenya. 190 p.
Muthoka M., Ogello E.O., Ouma H., Obiero K. (2021). Periphyton technology enhances growth performance and delays prolific breeding of Nile Tilapia, Oreochromis niloticus (Linnaeus, 1758), juveniles. Asian Fisheries Science, 34: 290-300.
Rai S., Yi Y., Wahab M.A., Bart A.N., Diana J.S. (2008). Comparison of rice straw and bamboo stick substrates in periphyton-based carp polyculture systems. Aquaculture Research, 39(5): 464-473.
Ramesh M.R., Shankar K.M., Mohan C.V., Varghese T.J. (1999). Comparison of three plant substrates for enhancing carp growth through bacterial biofilm. Aquaculture Engineering, 19(2): 119-131.
Ruby P., Ahilan B., Prabu E. (2018). Periphyton based aquaculture: A review. Journal of Aquaculture in the Tropics, 33(1-2): 35-48.
Sahu P.K., Jena J.K., Das P.C., Mondal S., Das R. (2007). Production performance of Labeo calbasu (Hamilton) in polyculture with three Indian major carps Catla catla (Hamilton), Labeo rohita (Hamilton) and Cirrhinus mrigala (Hamilton) with provision of fertilizers, feed and periphytic substrate as varied inputs. Aquaculture, 262: 333-339.
Santhiya A.A.V., Athithan S., Ahilan B., Kumar J.S.S., Srinivasan A. (2017). Evaluation of periphyton quantity on different natural substrates in earthen lined pond. Journal of Applied and Natural Science, 9 (3):1630-1636.
Shankar K.M., Mohan C.V., Nandeesha M.C. (1998). Promotion of substrate based microbial biofilm in ponds – a low cost technology to boost fish production. NAGA, the ICLARM Quarterly, October-December: 18-22.
Shilta M.T., Chadha N.K., Pandey P.K., Sawant P.B. (2016). Effect of biofilm on water quality and growth of Etroplus suratensis (Bloch, 1790). Aquaculture International, 24: 661-674.
Shyne Anand S., Kumar S., Deo A.D., Panigrahi A., Ghoshal T.K., Sundaray J.K., De D., Dayal J.S., Biswas G., Ananda Raja R., Ravisankar T., Ponniah A.G., Ravichandran P., Gopal C. (2014). Periphyton based shrimp culture – a sustainable technology. CIBA Technology Series, 11. 12 p.
Tidwell J.H., Coyle S., Van Arnum A., Weibel C. (2000). Production response of freshwater prawn Macrobrachium rosenbergii to increasing amounts of artificial substrate in ponds. Journal of the World Aquaculture Society, 31: 452-458.
Uddin M.S., Farzana A., Fatema M.K., Azim M.E., Wahab M.A., Verdegem M.C.J. (2007). Technical evaluation of tilapia (Oreochromis niloticus) monoculture and tilapia prawn (Macrobrachium rosenbergii) polyculture in earthen ponds with and without substrates for periphyton development. Aquaculture, 269: 232-240.
Umesh N.R., Shankar K.M., Mohan C.V. (1999). Enhancing growth of common carp, rohu and Mozambique tilapia through plant substrate: the role of bacterial biofilm. Aquaculture International, 7: 251-260.
Van Dam A.A., Beveridge M.C.M., Azim M.E., Verdegem M.C.J. (2002). The potential of fish production based on periphyton. Reviews in Fish Biology and Fisheries, 12: 1-31.
Vijay Amirtharaj K.S., Ahilan B., Rajagopalsamy C.B.T., George R.M., Jawahar P. (2022). Effects of different substrates on the growth and composition of periphyton in the low saline groundwater system. Science Asia, 48(1): 82-88.
Wahab M.A., Kibria M.G. (1994). Katha and kua fisheries - unusual fishing methods in Bangladesh. Aquaculture News, 18: 24.
Wahab M.A., Azim M.E., Ali M.H., Beveridge M.C.M., Khan S. (1999a). The potential of periphyton based culture of the native major carp calbaush, Labeo calbasu (Hamilton). Aquaculture Research, 30(6): 409-419.
Wahab M.A., Mannan M.A., Huda M.A., Azim M.E., Beveridge M.C.M., Tollervey A.G. (1999b). Effects of periphyton grown on bamboo substrates on growth and production of Indian Major carp rohu (Labeo rohita Ham.). Bangladesh Journal of Fisheries Research, 3(1): 1-10.
Welcomme R.L. (1972). An evaluation of acadja method of fishing as practised in the coastal lagoons of Dahomey (West Africa). Journal of Fish Biology, 4(1): 39-55.
Copyright (c) 2024 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.