Effect of dietary Lactococcus lactis and Bacillus subtilis on the innate immunity, intestinal microbiota, histometrical indices, and resistance against Aeromonas hydrophila in Oscar, Astronotus ocellatus Agassiz, 1831
Downloads
This work aimed to investigate the effect of dietary Lactococcus lactis and Bacillus subtilis on the immune responses, intestinal microbiota, and resistance to pathogens of Oscar, Astronotus ocellatus. During 70 days trial, 300 juveniles (8.96±0.033 g) were fed diets enriched with L. lactis and B. subtilis. The treatments included 150, 300, 450 mg kg-1 of dietary L. lactis (LL150, LL300, LL450); 150, 300, 450 mg kg-1 of dietary B. subtilis (BS150, BS300, BS450); 150, 300, 450 mg kg-1 of diet an equal mixture of L. lactis and B. subtilis (MIX150, MIX300, MIX450); and a non-supplemented control group. At the end of the rearing period, histological, immunological, and intestinal microbiota indices in treatments were investigated. To evaluate disease resistance, 15 fish in each treatment were infected in each treatment by Aeromonas hydrophila. The results showed that adding B. subtilis and L. lactis, particularly in MIX300, reduced the anaerobic heterotrophic bacterial microbiota and increased lactic acid bacteria (LAB) in fish. The highest white blood cell (WBC) level was recorded in the LL150 group. The lymphocytes in fish fed LL150, LL300, MIX150, and MIX300 diets were changed and neutrophils of LL150, LL300, LL450, MIX300, and MIX450 were significantly increased. Monocytes in fish fed MIX300 and MIX450 diets raised significantly. The IgM, ACH50, and lysozyme levels in fish-fed diets enriched by bacteria, especially in LL450, were significantly higher than the control treatment. The intestinal villi in LL450, BS150, and MIX450 were significantly higher, showing lower damages than the other treatments. The survival rates of the infected fishes were higher in MIX150 and MIX300 groups.
Downloads
Abarike E.D., Cai J., Lu Y., Yu H., Chen L., Jian J., Tang J., Jun L., Kuebutornye F.K.A. (2018). Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish and Shellfish Immunology, 82: 229-238.
Al-Dohail M.A., Hashim R., Aliyu-Paiko M. (2011). Evaluating the use of Lactobacillus acidophilus as a biocontrol agent against common pathogenic bacteria and the effects on the haematology parameters and histopathology in African catfish Clarias gariepinus juveniles. Aquaculture Research, 42(2): 196-209.
Allameh S.K., Ringø E., Yusoff F.M., Daud H.M., Ideris A. (2017) Dietary supplement of Enterococcus faecalis on digestive enzyme activities, short-chain fatty acid production, immune system response and disease resistance of Javanese carp (Puntius gonionotus, Bleeker 1850). Aquaculture Nutrition, 23: 331-338.
Askarian F., Kousha A., Salma W., Ringø E. (2011). The effect of lactic acid bacteria administration on growth, digestive enzyme activity and gut microbiota in Persian sturgeon (Acipenser persicus) and beluga (Huso huso) fry. Aquaculture Nutrition, 17(5): 488-497.
Balcázar J.L., De Blas I., Ruiz-Zarzuela I., Cunningham D., Vendrell D., Múzquiz, J.L. (2006). The role of probiotics in aquaculture. Veterinary Microbiology, 114(3-4): 173-186.
Balcázar J.L., De Blas I., Ruiz-Zarzuela I., Vendrell D., Gironés, O., Muzquiz J.L. (2007) Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunology and Medical Microbiology, 51(1): 185-193.
Brunt J., Newaj-Fyzul A., Austin B. (2007). The development of probiotics for the control of multiple bacterial diseases of rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Diseases, 30(10): 573-579.
CPCSEA. (2021). Guideline of CPCSEA for experimentation on fishes, Government of India, Ministry of fisheries. 66 p.
Dias D. de C., Tachibana L., Iwashita M.K.P., Nakandakare I.B., Romagosa E., Seriani R., Ranzani-Paiva M.J.T. (2020). Probiotic supplementation causes hematological changes and improves non-specific immunity in Brycon amazonicus. Acta Scientiarum - Biological Sciences, 42: 1-9.
Díaz-Rosales P., Salinas I., Rodríguez A., Cuesta A., Chabrillón M., Balebona M.C., Moriñigo M.Á., Esteban M.Á., Meseguer J. (2006). Gilthead seabream (Sparus aurata L.) innate immune response after dietary administration of heat-inactivated potential probiotics.Fish and Shellfish Immunology, 20(4): 482-492.
Doan H. Van, Soltani M., Ringø E. (2021). In vitro antagonistic effect and in vivo protective efficacy of Gram-positive probiotics versus Gram-negative bacterial pathogens in finfish and shellfish. Aquaculture, 540: 736581.
Eagderi S., Mojazi Amiri B., Adriaens D. (2013). Description of the ovarian follicle maturation of the migratory adult female bulatmai barbel (Luciobarbus capito, Guldenstadt 1772) in captivity. Iranian Journal of Fisheries Sciences, 12(3): 550-560.
Elsabagh M., Mohamed R., Moustafa E.M., Hamza A., Farrag F., Decamp O., Dawood M.A.O., Eltholth M. (2018). Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition, 24(6): 1613-1622.
Ferguson R.M.W., Merrifield D.L., Harper G.M., Rawling M.D., Mustafa S., Picchietti S., Balcázar J.L., Davies S.J. (2010). The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). Journal of Applied Microbiology, 109(3): 851-862.
Ghosh, S., Sinha A., Sahu C. (2008). Dietary probiotic supplementation on growth and health of live-bearing ornamental fishes. Aquaculture Nutrition, 14(4): 289-299.
Gobi N., Vaseeharan B., Chen J.C., Rekha R., Vijayakumar S., Anjugam M., Iswarya A. (2018). Dietary supplementation of probiotic Bacillus licheniformis Dahb1 improves growth performance, mucus and serum immune parameters, antioxidant enzyme activity as well as resistance against Aeromonas hydrophila in tilapia Oreochromis mossambicus. Fish and Shellfish Immunology, 74: 501-508.
Hamza A., Fdhila K., Zouiten D., Masmoudi A.S. (2016). Virgibacillus proomii and Bacillus mojavensis as probiotics in sea bass (Dicentrarchus labrax) larvae: effects on growth performance and digestive enzyme activities. Fish Physiology and Biochemistry, 42: 495-507.
Han B., Long W., He J., Liu Y., Si Y., Tian L. (2015). Effects of dietary Bacillus licheniformis on growth performance, immunological parameters, intestinal morphology and resistance of juvenile Nile tilapia (Oreochromis niloticus) to challenge infections. Fish and Shellfish Immunology, 46(2): 225-231.
Kim D.-H., Austin B. (2006). Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish and Shellfish Immunology, 21(5): 513-524.
Lazado C.C., Caipang C.M.A. (2014). Mucosal immunity and probiotics in fish. Fish and Shellfish Immunology, 39: 78-89.
Lee S., Katya K., Park Y., Won S., Seong M., hamidoghli A., Bai S.C. (2017). Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish and Shellfish Immunology, 61: 201-210.
Liu H., Wang S., Cai Y., Guo X., Cao Z., Zhang Y., Liu S., Yuan W., Zhu W., Zheng Y., Xie, Z.H., Guo W., Zhou Y. (2017). Dietary administration of Bacillus subtilis HAINUP40 enhances growth, digestive enzyme activities, innate immune responses and disease resistance of tilapia, Oreochromis niloticus. Fish and Shellfish Immunology, 60: 326-333.
Loh J.Y. ., Lim Y.Y., Ting A.S.Y. (2017). Bacteriocin-like substances produced by Lactococcus lactis subsp. lactis CF4MRS isolated from fish intestine: Antimicrobial activities and inhibitory properties. International Food Research Journal, 24(1): 394-400.
Martínez Cruz P., Ibáñez A.L., Monroy Hermosillo O.A., Ramírez Saad, H.C. (2012). Use of probiotics in aquaculture. International Scholarly Research Notices Microbiology, 2012: 1-13.
Merrifield D.L., Bradley G., Baker R.T.M., Davies S.J. (2010). Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquaculture Nutrition, 16(5): 496-503.
Mohammadian T., Dezfuly Z.T., Motlagh R.G., Jangaran-Nejad A., Hosseini S.S., Khaj H., Alijani N. (2020). Effect of Encapsulated Lactobacillus bulgaricus on Innate Immune System and Hematological Parameters in Rainbow Trout (Oncorhynchus mykiss), Post-Administration of Pb. Probiotics and Antimicrobial Proteins, 12(2): 375-388.
Mukherjee A., Ghosh K. (2016). Antagonism against fish pathogens by cellular components and verification of probiotic properties in autochthonous bacteria isolated from the gut of an Indian major carp, Catla catla (Hamilton). Aquaculture Research, 47(7): 2243-2255.
Nayak S.K. (2010). Probiotics and immunity: A fish perspective. Fish and Shellfish Immunology, 29(1): 2-14.
Nayak S. K., Swain P., Mukherjee S. C. (2007). Effect of dietary supplementation of probiotic and vitamin C on the immune response of Indian major carp, Labeo rohita (Ham.). Fish and Shellfish Immunology, 23(4): 892-896.
Nikoskelainen S., Ouwehand A.C., Bylund G., Salminen S., Lilius E.-M. (2003). Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish and Shellfish Immunology, 15(5): 443-452.
Nikoskelainen S., Ouwehand A., Salminen S., Bylund G. (2001). Protection of rainbow trout (Oncorhynchus mykiss) from furunculosis by Lactobacillus rhamnosus. Aquaculture, 198(3-4): 229-236.
Opiyo M.A., Jumbe J., Ngugi C.C., Charo-Karisa H. (2019). Dietary administration of probiotics modulates non-specific immunity and gut microbiota of Nile tilapia (Oreochromis niloticus) cultured in low input ponds. International Journal of Veterinary Science and Medicine, 7(1): 1-9.
Panigrahi A., Kiron V., Kobayashi T., Puangkaew J., Satoh S., Sugita H. (2004). Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Veterinary Immunology and Immunopathology, 102(4): 379-388.
Panigrahi A., Kiron V., Puangkaew J., Kobayashi T., Satoh S., Sugita H. (2005). The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture, 243(1-4): 241-254.
Panigrahi A., Kiron V., Satoh S., Hirono I., Kobayashi T., Sugita H., Puangkaew J., Aoki T. (2007) Immune modulation and expression of cytokine genes in rainbow trout Oncorhynchus mykiss upon probiotic feeding. Developmental and Comparative Immunology, 31(4): 372-382.
Raida M.K., Larsen J.L., Nielsen M.E., Buchmann K. (2003). Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus2B). Journal of Fish Diseases, 26(8): 495-498.
Ramos M.A., Gonçalves J.F.M., Batista S., Costas B., Pires M.A., Rema P., Ozório R.O.A. (2015). Growth, immune responses and intestinal morphology of rainbow trout (Oncorhynchus mykiss) supplemented with commercial probiotics. Fish and Shellfish Immunology, 45(1): 19-26.
Saenz de Rodriganez M.A., Diaz-Rosales P., Chabrillon M., Smidt H., Arijo S., Leon-Rubio J.M., F. Alarcon J., Bale-bona M.C., Morinigo M.A., Cara J.B., Moyano F.J. (2009). Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Solea senegalensis, Kaup 1858. Aquaculture Nutrition, 15: 177-185.
Safari O., Atash M.S. (2013). Study on the effects of probiotic, Pediococcus acidilactici in the diet on some biological indices of Oscar Astronauts ocellatus. International Research Journal of Applied and Basic Sciences, 4(11): 3458-3464.
Saputra F., Shiu Y.-L., Chen Y.-C., Puspitasari A.W., Danata R.H., Liu C.-H., Hu S.-Y. (2016) Dietary supplementation with xylanase-expressing B. amyloliquefaciens R8 improves growth performance and enhances immunity against Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 58: 397-405.
Sayes C., Leyton Y., Riquelme C. (2018). Probiotic bacteria as a healthy alternative for fish aquaculture. In: Antibiotic use in animals. https://doi.org/10.5772 /intechopen.71206
Sharifuzzaman S.M.M., Austin B. (2009) Influence of probiotic feeding duration on disease resistance and immune parameters in rainbow trout. Fish and Shellfish Immunology, 27(3): 440-445.
Shenavar Masouleh A., Soltani M., Ahmadi M., Pourkazemi M., Taheri Mirghaed A. (2016). The effect of using Lactococcus lactis JF831150 on the status of the intestinal bacterial flora of Persian sturgeon (Acipenser persicus) and exposure to Aeromonas hydrophila. Journal of Veterinary Research, 71(3): 303-310.
Soltani M., Ghosh K., Hoseinifar S.H., Kumar V., Lymbery A.J., Roy S., Ringø E. (2019) Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science and Aquaculture, 27(3): 331-379.
Soltani M., Kalbassi M.R. (2001) Protection of Persian sturgeon (Acipenser persicus) fingerling against Aeromonas hydrophila septicemia using three different antigens. Bulletin European Association of Fish Pathologists, 21: 235-240.
Sun Y.Z., Yang H.L., Ma R.L., Song K., Li J.S. (2012) Effect of Lactococcus lactis and Enterococcus faecium on growth performance, digestive enzymes and immune response of grouper Epinephelus coioides. Aquaculture Nutrition, 18(3): 281-289.
Suvarna K., Suvarna K., Layton Ch., Bancroft J. (2012) Bancroft's Theory and Practice of Histological Techniques Churchill Living Stone. 654 p.
Teige L.H., Kumar S., Johansen G.M., Wessel Ø., Vendramin N., Lund M., Rimstad E., Boysen P., Dahle M.K. (2019) Detection of salmonid IgM specific to the piscine Orthoreovirus outer capsid spike protein sigma 1 using lipid-modified antigens in a bead-based antibody detection assay. Frontiers in Immunology, 10: 2119.
Tukmechi A., Rahmati Andani H.R., Manaffar R., Sheikhzadeh N. (2011). Dietary administration of beta-mercapto-ethanol treated Saccharomyces cerevisiae enhanced the growth, innate immune response and disease resistance of the rainbow trout, Oncorhynchus mykiss. Fish and Shellfish Immunology, 30(3): 923-928.
Won S., Hamidoghli A., Choi W., Park Y., Jang W.J., Kong, I.S., Bai, S.C. (2020). Effects of Bacillus subtilis wb60 and Lactococcus lactis on growth, immune responses, histology and gene expression in Nile tilapia, Oreochromis niloticus. Microorganisms, 8(1): 31906334.
Xia Y., Lu M., Chen G., Cao J., Gao F., Wang M., Liu Z., Zhang D., Zhu H., Yi M. (2018). Effects of dietary Lactobacillus rhamnosus JCM1136 and Lactococcus lactis subsp. lactis JCM5805 on the growth, intestinal microbiota, morphology, immune response and disease resistance of juvenile Nile tilapia, Oreochromis niloticus. Fish and Shellfish Immunology, 76: 368-379.
Yanbo W., Zirong X. (2006). Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Animal Feed Science and Technology, 127: 283-292.
Yilmaz A., Arsalan D. (2013). Oscar (Astronotus ocellatus Agassiz, 1831) production. Turkish Journal of Scientific Reviews, 6(2): 51-55.
Yu Y., Wang Q., Huang Z., Ding L., Xu Z. (2020). Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish. Frontiers in Immunology, 11: 1-14.
Copyright (c) 2022 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.