Dry feed for Artemia: its effect on performance, physiology, immune responses and bacterial resistance
Downloads
The larviculture of fish and shellfish is inevitably dependent on live food such as Artemia and one of the most important issues in rearing Artemia is the food supply. Artemia culture is mainly dependent on freshly prepared unicellular algae, which is not accessible easily. This research focused to prepare a dry feed that can support the survival and growth of Artemia and improve its resistance against pathogenic bacteria. The nauplii of Artemia were fed seven feeding treatments, including the control diet (algae + yeast) and six experimental dry feed containing different levels of probiotic bacteria. The results showed that Artemia fed a diet containing 10% algae+1.25% probiotic bacteria performed slightly better in terms of growth, but significantly higher survival and increased alkaline protease activity was detected compared to control. The lipase activity was significantly higher only in Artemia fed 5% algae + 0.625% probiotic bacteria, and the highest Amylase activity was detected in the control group. The activity of the antioxidant enzymes superoxide dismutase (SOD), Glutathione reductase (GRed), Glutathione peroxidase (GPx) and Malondialdehyde (MDA) presented a significant increase as a function of culture time and probiotic administration. The challenge with the pathogen resulted in significantly higher survival in all tested life stages of Artemia (nauplii, juvenile, and adults) in negative and positive controls compared to the control diet group. It is concluded that pathogen induces an oxidative stress response in almost all stages of Artemia growth and probiotic bacteria Bacillus coagulans and B. subtilis protects Artemia when challenged with Vibrio anguillarum by enhancing immune responses.
Downloads
Abatzopoulos J.T., El-Bermawi N., Vasdekis C., Baxevanis A.D., Sorgeloos P. (2003). Effects of salinity and temperature on reproductive and life span characteristics of clonal Artemia. (International Study of Artemia. LXVI). Hydrobiologia, 492(1-3): 191-199.
Ahmadnia Motlagh H., Farhangi M., Rafiee G., Noori F. (2012). Modulating gut microbiota and digestive enzyme activities of Artemia urniana by administration of different levels of Bacillus subtilis and Bacillus licheniformis. Aquaculture International, 20(4): 693-705.
Aly S.M., Abdel-Galil Ahmed Y., Abdel-Aziz Ghareeb A., Mohamed M.F. (2008). Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunology, 25(1-2): 128-36.
Anderson D.P. (1992). Immunostimulants, adjuvants and vaccine carriers in fish: applications to aquaculture. Annual review of fish diseases, 2: 281e307.
Anh N.T.N., Van Hoa N., Van Stappen G., Sorgeloos P. (2009). Effect of different supplemental feeds on proximate composition and Artemia biomass production in salt ponds. Aquaculture, 286: 217-225.
AOAC. (Association of Ofï¬cial Analytical Chemists). (2002). Ofï¬cial methods of analysis of ofï¬cial analytical chemists international (16th Ed.). Arlington, VA, USA: Association of Ofï¬cial Analytical Chemists.
Avella M.A., Gioacchini G., Decamp O., Makridis P., Bracciatelli C., Carnevali O. (2010). Application of multi-species of Bacillus in sea bream larviculture. Aquaculture, 305: 12-19.
Bagheri T., Hedayati S.A., Yavari V., Alizade M., Farzanfar A. (2008). Growth, survival and gut microbial load of Rainbow trout (Onchorhynchus mykiss) fry given diet supplemented with probiotic during the two months of ï¬rst feeding. Turkish Journal of Fish Aquatic Science, 8: 43-48.
Bahmanpour L., Hosseini L., Heydari R., Zare S., Manaffar R. (2009). Comparative study on the biometry and stress tolerance of the introduced and original populations of Artemia franciscana (Kellogg, 1906) males. Artemia 2009, December 13-14, Urmia- Iran. pp: 42-45.
Barlow D., Michael A.S. (1980). The propulsion and use of water current for swimming and feeding in larval and adult Artemia. In: G. Persoone, P. Sorgeloos, O.A. Roels, E.Jaspers (Eds.). The Brine Shrimp Artemia. Vol. 1. Morphology, Genetics, Radiobiology, Toxicology. Universa Press, Wetteren. pp: 61-73.
Basil A.J., Kannan A., Sathasiva P., Mathuram G., Selvarani D. (1989). Culture of Artemia using biogas slurry (cow dung), agricultural wastes and synthetic Artemia meal. Book of Abstracts, p. 59 in Aquaculture 89 conference Los Angeles, California, USA. pp: 12-16.
Baxevanis A.D., El-Bermawi N., Abatzopoulos T.J., Sorgeloos P. (2004). International Study on Artemia. LXVIII. Salinity effects on maturation, reproductive and life span characteristics of four Egyptian Artemia populations. Hydrobiologia, 513: 87-100.
Ben-Amotz A., Polle J.E.W., Subba Rao D.V. (2009). The alga Dunaliella: biodiversity, physiology, genomics and biotechnology. Science Publishers, Enfield. pp: 173-187.
Britton G. (1995). UV/Visible spectroscopy. In: G. Britton, S. Liaaen-Jensen, H. Pfander (eds.), Carotenoids, spectroscopy. Birkhauser. pp: 13-62.
Browne R.A., Wanigasekera G. (2000). Combined effects of salinity and temperature on survival and reproduction of five species of Artemia. Journal of Experimental Marine Biology and Ecology, 244: 1-29.
Chong A.S.C., Hashim R., Lee C.Y., Ali B.A. (2002). Partial characterization and activities of proteases form the digestive tract of discus fish (Symphysodon aequifasciata). Aquaculture, 203: 321-333.
Coutteau P., Lavens P., Sorgeloos P. (1990). Baker's yeast as a potential substitute for live algae in aquaculture diets: Artemia as a case study. World Aquaculture Society, 21(1): 1-8.
Coutteau P., Sorgeloos P. (1989). Feeding of the brine shrimp Artemia on yeast: effect of mechanical disturbance, animal density, water quality and light intensity. In: European Aquaculture Society Spec. Publ. N° 10. Bredene, Belgium. 344 p.
D'Agostino A. (1980). The vital requirements of Artemia: physiology and nutrition. In: Persoone G., Sorgeloos P., Roels O., Jaspers R. (eds.), the brine shrimp Artemia. Physiology, biochemistry, molecular biology, vol. 2. Universa Press, Wetteren, Belgium. pp: 55-82.
Das K.M., Tripathi S.D. (1991). Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture, 92: 21-32.
Deguara S., Jauncey K., Agius C. (2003). Enzyme activities and pH variations in the digestive tract of gilthead sea bream. Journal of Fish Biology, 62: 1033-1043.
Dobbeleir J., Adam N., Bossuyt E., Bruggeman E., Sorgeloos P. (1980). New aspects of the use of inert diets for high density culturing of brine shrimp. In: The brine Shrimp Artemia. Vol. 3. Ecology, Culturing, Use in Aquaculture. G. Persoone, P. Sorgeloos, O. Roels, E. Jaspers (Eds). Universa Press, Wetteren, Belgium. pp: 165-174.
Dwivedi S.N., Ansari S.K.R., Ahemad M.G. (1980). Mass culture of brine shrimp under controlled conditions in cement pool in Bombay, India. In: Persoone G., Sorgeloos Roles P., Jaspers E. (Eds.), The Brine Shrimp Artemia, Vol. 3, Ecology, Culturing, Use in Aquaculture. Universa Press, Wettern. pp: 175-184.
Evjemo J.O., Vadstein O., Olsen Y. (1999). Feeding and assimilation kinetics of Artemia franciscana given different concentrations of algae (T. iso). Journal of Experimental Marine Biology and Ecology, 242(2): 273-296.
Fanjul-Moles M.L., Gonsebatt M. (2011). Oxidative Stress and Antioxidant Systems in Crustacean Life Cycles. Oxidative Stress in Aquatic Ecosystems. D. Abele, J.P. Vázquez-Medina, T. Zenteno-Savín (Eds.), John Wiley & Sons, Ltd, Chichester, UK.
Fuller M.F. (2004). The encyclopedia of farm animal nutrition. CABI Publishing Series. 606 p.
García-Carreño F.L., Haard N.F. (1993). Characterization of proteinase classes in Langostilla Pleuroncodes planipes and Crayï¬sh Pacifastacus astacus extracts. Journal of Food Biochemistry, 17: 97-113.
Hauton C. (2012). The scope of the crustacean immune system for disease control. Journal of Invertebrate Pathology, 110: 251-260
Havennar R., Ten Brink B., Huisint J.H.J. (1992). Selection of strains for probiotic use. In: R. Fuller (Eds.). Probiotics, the scientific basis. Chapman and Hall, London, pp: 209-224.
Hedge J.E., Hofreiter B.T. (1962). In: Carbohydrate Chemistry, 17. In: R.L. Whistler, J.N. Be Miller (Eds.), Academic Press, New York. pp: 17-22.
Iijima N., Tanaka S., Ota Y. (1998). Purification and characterization of bile salt activated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiology and Biochemistry, 18: 59-69.
Intriago P., Jones D.A. (1993). Bacteria as food for Artemia. Aquaculture 113 (1-2): 115 127.
Jorgensen K., Skibsted L. (1993). Carotenoid scavenging radicals. Effect of carotenoid structure and oxygen partial pressure on antioxidative activity. Z. Lebensm. Unters Forsch, 196: 423-429.
Kolkovski S. (2001). Digestive enzymes in ï¬sh larvae and juveniles implications and applications to formulated diets. Aquaculture, 200:181-201.
Lavens P., Leger P., Sorgeloos P. (1989). Manipulation of the fatty acid profile in Artemia offspring produced in intensive culture systems. In: De Pauw N., Jaspers E., Ackefors H., Wilkins N. (Eds), Aquaculture and Biotechnology in Progress. European Aquaculture Society, Bredene, Belgium. pp: 731-739.
Lavens P., Sorgeloos P. (1996). Manual on the Production and Use of Live Food for Aquaculture. University of Ghent, Ghent, Belgium. Published in Rome by FAO.
Ma Y., Liu Z., Yang Z., Li M., Liu J., Song J. (2013). Effects of dietary live yeast Hanseniaspora opuntiae C21 on the immune and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicas. Fish and Shellfish Immunology, 34: 66-73.
Maget-Dana R., Peypoux F. (1994). Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 87: 151-174.
Magnelli P., Cipollo J., Abeijon C. (2001). A refined method for the determination of Saccharomyces cerevisiae cell wall composition andb-1,6-glucan fine structure. Analytical Biochemistry, 301:136e50
Maldonado-Montiel T.D.N.J., Rodriguez-Canche L.G., Olvera Novoa M.A. (2003). Evaluation of Artemia biomass production in San Crisanto, Yucatan, Mexico, with the use of poultry manure as organic fertilizer. Aquaculture, 219: 573-584.
McDonald P., Edwards R.A., Greenhalgh J.F.D. (2002). Animal Nutrition. 6th Edition. Longman, London and New York. 543 p.
Merriï¬eld D.L., Dimitroglou A., Bradley G., Baker R.T.M., Davies S.J. (2010). Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) I. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria. Aquaculture Nutrition, 16: 504-510.
Munilla-Moran R., Stark J.R., Barbour A. (1990). The role of exogenous enzymes in digestion in cultured turbot larvae (Scophthalmus maximus L.). Aquaculture, 88: 337-350.
Naegel L.C.A. (1999). Controlled production of Artemia biomass using an inert commercial diet, compared with the microalgae Chaetoceros. Journal of Aquaculture Engineering, 21: 49-59.
Navarro J.C. Amat F. (1992). Effect of algal diets on the fatty acid composition of brine shrimp, Artemia sp. cysts. Aquaculture, 101: 223-227.
Nelis H.J.C.F., Lavens P., Van Steenberge M.M.Z., Sorgeloos P., Criel G.R., De Leenheer A.P. (1988). Qualitative and quantitative changes in the carotenoids during development of the brine shrimp Artemia. Journal of Lipid Research, 29: 491-499.
Niu Y., Defoirdt T., Baruah K., Van de Wiele T., Dong S., Bossier P. (2014). Bacillus sp. LT3 improves the survival of gnotobiotic brine shrimp (Artemia franciscana) larvae challenged with Vibrio campbellii by enhancing the innate immune response and by decreasing the activity of shrimp-associated vibrios. Veterinary Microbiology, 173(34): 279-88.
Norouzitallab P., Baruah K., Biswas P., Vanrompay D., Bossier P. (2016). Probing the phenomenon of trained immunity in invertebrates during a transgenerational study, using brine shrimp Artemia as a model system. Nature Scientific Reports, 6: 21166.
Ownagh E., Agh N., Noori F. (2015). Comparison of the growth, survival and nutritional value of Artemia using various agricultural by-products and unicellular algae Dunaliella salina, Iranian Journal of Fisheries Sciences, 14(2): 358-368.
Parmar P.V., Murthy H.S., Tejpal C.S., Naveen Kumar B.T. (2012). Effect of brewer's yeast on immune response of giant freshwater prawn, Macrobrachium rosenbergii, and its resistance to white muscle disease. Aquaculture International, 20: 951-964.
Philipp E.E.R., Lipinski S., Rast J., Rosenstiel P. (2011). Immune Defense of Marine Invertebrates: The Role of Reactive Oxygen and Nitrogen Species in Oxidative Stress in Aquatic Ecosystems. (eds Abele D., Vázquez-Medina J.P., Zenteno-Savín T.), John Wiley & Sons, Ltd, Chichester, UK. pp: 236- 246.
Piccioni M. (1965). Dictionnaire des aliments pour les animaux. Edagricole. 640 p.
Provasoli L., Kagehide S. (1959). Axenic cultivation of the brine shrimp Artemia salina. Biological Bulletin, 117: 347-355.
Raida M.K., Larsen J.L., Nielsen M.E., Buchmann K. (2003). Enhanced resistance of rainbow trout, Oncorhynchus mykiss (Walbaum), against Yersinia ruckeri challenge following oral administration of Bacillus subtilis and B. licheniformis (BioPlus 2B). Journal of Fish Disease, 26: 495-498.
Reeve M.R. (1963). The ï¬lter-feeding of in Artemia. II. In suspensions of various particles. Journal of Experimental Biology, 40: 207-214.
Ringo E., Sinclair P.D., Birkbeck H., Barbour A. (1992). Production of eicosapentaenoic acid 20:5 n-3 by Vibrio pelagius isolated from turbot Scophthalmus maximus L. larvae. Applied Environment Microbiology, 58: 3777-3778.
Rojas-García C.R., Hasanuzzaman A.F.M., Sorgeloos P., Bossier P. (2008). Cell wall deficient Saccharomyces cerevisiae strains as microbial diet for Artemia larvae: protective effects against vibriosis and participation of phenoloxidase. Journal of Experimental Marine Biology and Ecology, 360(1): 1-8.
Rojas-García C.R., Sorgeloos P., Bossier P. (2009). Phenoloxidase and trypsin in germ-free larvae of Artemia fed with cooked unicellular diets: Examining the alimentary and protective effects of putative beneficial bacterium, yeast and microalgae against vibriosis. Journal of Experimental Marine Biology and Ecology, 381(2): 90-97.
Ronsivalli P.G., Simpson K.L. (1987). The brine shrimp Artemia as a protein source for humans. In: Sorgeloos P., Bengtson D.A., Decleir W., Jaspers E (Eds.). Artemia Research and its Applications. Ecology, Culturing, Use in Aquaculture, vol. 3. Universa Press, Wetteren, Belgium. pp: 503-514.
Rudneva I.I. (1999). Antioxidant system of Black Sea animals in early development. Comp. Biochem. Physiol. Part C, 122: 265-271.
Sanders M.E., Morelli L., Tompkins T.A. (2003). Sporeformers as human probiotics: Bacillus, Sporolacto bacillus, and Brevi bacillus. Comprehensive Reviews in Food Science and Food Safety, 12: 101-110.
Seixas P., Rey-Méndez M., Valente L.M.P., Otero A. (2010). High DHA content in Artemia is ineffective to improve Octopus vulgarispara larvae rearing. Aquaculture, 300(1): 156-162.
Skrodenyt_e-Arbaciauskiene V. (2007). Enzymatic activity of intestinal bacteria in roach Rutilus rutilus L. Fish Sciences, 73: 964-966.
Söderhäll K., Cerenius L. (1998). Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology, 10(1): 23-8.
Sorgeloos P. (1982). Live animal food for larval rearing in aquaculture: the brine shrimp Artemia. Review paper presented at the World Conference on Aquaculture. Venice, Italy, 21-25 September, 1981.
Sorgeloos P., Baeza-Mesa M., Bossuyt E. Bruggeman E., Dobbeleir J., Versichele D., Lavina E., Bernardino A. (1980). Culture of Artemia on Rice Bran: The Conversion of a Wast-Product into Highly Nutritive Animal Protein, Aquaculture, 21: 393-396.
Suzer C., Coban D., Kamaci H.O., Saka S., Firat K., Otgucuoglu O., Kucuksari H. (2008). Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: Effects on growth. Aquaculture, 280: 140-145.
Takahashi Y., Kondo M., Itami T., Honda T., Inagawa H., Nishizawa T. (2000). Enhancement of disease resistance against penaeid acute viraemia and induction of virus-inactivation in haemolymph of kuruma shrimp,Penaeus japonicus, by administration of Pantoea agglomeranslipopolysaccharide (LPS). Fish and Shellfish Immunology, 10: 555-563.
Touraki M., Karamanlidou G., Karavida P., Chrysi K. (2012). Evaluation of the probiotics Bacillus subtilis and Lactobacillus plantarum bioencapsulated in Artemia nauplii against vibriosis in European sea bass larvae (Dicentrarchus labrax, L.). World Journal of Microbiology and Biotechnology, 28(6): 2425-33.
Vahdat S., Esmaaeili Fereidouni A., Khalesi M.K. (2018). Long-term effects of vermicompost manure leachate (powder) inclusions on growth and survival, biochemical composition, total carotenoids, and broodstock reproductive performance of Artemia franciscana (Kellogg, 1906). Aquaculture International, 26: 569-588.
Vanhaecke P., Sorgeloos P. (1989). International study on Artemia. XLVII. The effect of temperature on cyst hatching, larval survival and biomass production for different geographical strains of brine shrimp Artemia spp. Annuals of Society of Royal Zoology, Belgium, 118: 7-23.
Verschuere L., Hanglamong H., Criel G., Sorgeloos P., Verstraete W. (2000). Selected Bacterial Strains Protect Artemia spp. from the Pathogenic Effects of Vibrio proteolyticus CW8T2. Applied and Environmental Microbiology, 66(3): 1139-1146.
Verschuere L., Rombaut G., Sorgeloos P., Verstraete W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Microbiology and Molecular Biology Reviews, 64(4), 655-671.
Viciano E., Monroig O., Barata C., Peña C., Navarro J.C. (2015). Antioxidant activity and lipid peroxidation in Artemia nauplii enriched with DHA-rich oil emulsion and the effect of adding an external antioxidant based on hydroxytyrosol. Aquaculture Research, 48(6): 1006-1019.
Wang Y., Gu Q. (2010). Effect of probiotics on white shrimp (Penaeus vannamei) growth performance and immune response. Marine Biology Research, 6(3): 327-332.
Wang Y.B. (2007). Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei. Aquaculture, 269: 259-264.
Wang Y.B., Xu Z. (2006). Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Animal Feed Science and Technology, 127:283-292.
Wear R.G., Haslett S.J., Alexander N.L. (1986). Effects of temperature and salinity on the biology of Artemia fransiscana Kellogg from Lake Grassmere, New Zealand. 2. Maturation, fecundity, and generation times, Journal of Experimental Marine Biology and Ecology, 98 (1-2): 167-183.
Worthington C. (1991). Worthigton Enzyme Manual Related Biochemical Freehold. New Jersey Worthington C. (1991). Worthigton Enzyme Manual Related Biochemical Freehold. New Jersey.
Wurtsbaugh W.A., Gliwicz Z.M. (2001). Limnological control of brine shrimp population dynamics and cyst production in the Great Salt Lake, Utah, Hydrobiologia, 466: 119-132.
Yu B.P. (1994). Cellular defenses against damage from reactive oxygen species. Physiological Reviews, 74: 139-162.
Zhukova N.V., Imbs A.B., Yi L.F. (1998). Diet-induced changes in lipid and fatty acid composition of Artemia salina. Comp. Comparative Biochemistry and Physiology B, 120: 499-506.
Zmora O., Avital E., Gordin H.T. (2002). Result of an attempt for mass production of Artemia in extensive ponds. Aquaculture, 213: 395-400.
Zmora O., Shpigel M. (2006). Intensive mass production of Artemia in recirculated system. Aquaculture, 255: 488-494.
Zorriehzahra M.J., Delshad S.T., Adel M., Tiwari R., Karthik K., Dhama K., Lazado C.C. (2016). Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Veterinary Quarterly, 36(4): 228-241.