Long-term effect of zinc oxide nanoparticles on population growth, reproductive characteristics and zinc accumulation of marine rotifer, Brachionus plicatilis

Shilan Mohammadi, Nasrollah Ahmadifard, Behrooz Atashbar, Abbas Nikoo, Ramin Manaffar


In the present study, the effects of ZnO nanoparticles (NPs) on marine rotifer, Brachionus plicatilis, was investigated in three separate experiments. Firstly, the sensitivity and reproductive characteristics of B. plicatilis were studied at concentrations of 0, 0.1, 0.5, 1, 3, 5 and 10 mg L-1 of ZnO-NPs for 10 days. Based on the results, the total number of rotifers (TNR) significantly decreased at 5 and 10 mg L-1 of ZnO-NPs. In addition, the specific growth rate (SGR) of animals was negative at two of the concentrations of ZnO-NPs. In the second experiment, the TNR at 4 concentrations of ZnO-NPs (0, 10, 13, 17, and 19 mg L-1) during 72 h were tested and the 24-72 h LC50 of ZnO-NPs was calculated. After three days, the entire population of rotifers was generally lost at 19 mg L-1 of ZnO NPs. The LC50 of ZnO-NPs in animals at 24, 48, and 72 h intervals was registered as 18.2±1.34, 12.43±0.08, and 9.63±0.26 mg L-1, respectively. Finally, the zinc accumulation in rotifers was measured at different concentrations (0, 0.1, 0.5, and 1.3 mg L-1) of ZnO-NPs and maximum zinc (123 μg g-1 of rotifer DW) uptake by rotifers was observed in treatment 3 mg L-1 of ZnO-NPs. In sum, it can be concluded that the B. plicatilis can be used as a biological model for studying marine water contaminants with nanoparticles, especially ZnO-NPs.


Biological model, Nanoparticles, Rotifer, Zinc bioaccumulation.

Full Text:



Allan J.D. (1976). Life history patterns in zooplankton. The American Naturalist, 110(971): 165-180.

Alvarado-Flores J., Rico-Martínez R., Ventura-Juárez J., Silva-Briano M., Rubio-Franchini I. (2012). Bioconcentration and localization of lead in the freshwater rotifer Brachionus calyciflorus Pallas 1677 (Rotifera: Monogononta). Aquatic Toxicology, 109: 127-132.

Aruoja V., Dubourguier H.-C., Kasemets K., Kahru A. (2009). Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment, 407(4): 1461-1468.

Ates M., Daniels J., Arslan Z., Farah I.O., Rivera H.F. (2013). Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environmental Science: Processes and Impacts, 15(1): 225-233.

Bacchetta R., Santo N., Marelli M., Nosengo G., Tremolada P. (2017). Chronic toxicity effects of ZnSO4 and ZnO nanoparticles in Daphnia magna. Environmental Research, 152: 128-140.

Bhuvaneshwari M., Sagar B., Doshi S., Chandrasekaran N., Mukherjee A. (2017). Comparative study on toxicity of ZnO and TiO2 nanoparticles on Artemia salina: effect of pre-UV-A and visible light irradiation. Environmental Science and Pollution Research, 24(6): 5633-5646.

Blinova I., Ivask A., Heinlaan M., Mortimer M., Kahru A. (2010). Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environmental Pollution, 158(1): 41-47.

Clément L., Hurel C., Marmier N. (2013). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants–effects of size and crystalline structure. Chemosphere, 90(3): 1083-1090.

Dahms H.-U., Hagiwara A., Lee J.-S. (2011). Ecotoxicology, ecophysiology, and mechanistic studies with rotifers. Aquatic Toxicology, 101(1): 1-12.

Della Torre C., Bergami E., Salvati A., Faleri C., Cirino P., Dawson K., Corsi I. (2014). Accumulation and embryotoxicity of polystyrene nanoparticles at early stage of development of sea urchin embryos Paracentrotus lividus. Environmental Science and Technology, 48(20): 12302-12311.

EPA. (1987). Ambient water quality criteria for zinc. U.S. Environmental Protection Agency Report 440/5-87-003.

Esbaugh A., Brix K., Mager E., De Schamphelaere K., Grosell M. (2012). Multi-linear regression analysis, preliminary biotic ligand modeling, and cross species comparison of the effects of water chemistry on chronic lead toxicity in invertebrates. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 155(2): 423-431.

Gama-Flores J.L., Sarma S., Nandini S. (2004). Acute and chronic toxicity of the pesticide methyl parathion to the rotifer Brachionus angularis (Rotifera) at different algal (Chlorella vulgaris) food densities. Aquatic Ecology, 38(1): 27-36.

Grosell M., Gerdes R.M., Brix K.V. (2006). Chronic toxicity of lead to three freshwater invertebrates-Brachionus calyciflorus, Chironomus tentans, and Lymnaea stagnalis. Environmental Toxicology and Chemistry, 25(1): 97-104.

Hagiwara A., Yoshinaga T. (2017). Rotifers: Aquaculture, Ecology, Gerontology, and Ecotoxicology: Springer. 180 p.

Hao L., Chen L. (2012). Oxidative stress responses in different organs of carp (Cyprinus carpio) with exposure to ZnO nanoparticles. Ecotoxicology and Environmental Safety, 80: 103-110.

Heinlaan M., Ivask A., Blinova I., Dubourguier H.-C., Kahru A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7): 1308-1316.

Hogstrand C. (2011). Zinc: Homeostasis and Toxicology of Essencial Metals. Academic Press San Diego. pp: 135-200.

Holbrook R.D., Murphy K.E., Morrow J.B., Cole K.D. (2008). Trophic transfer of nanoparticles in a simplified invertebrate food web. Nature Nanotechnology, 3(6): 352.

Hotos G.N. (2002). Selectivity of the rotifer Brachionus plicatilis fed mixtures of algal species with various cell volumes and cell densities. Aquaculture Research, 33(12): 949-957.

Jarvis T.A., Miller R.J., Lenihan H.S., Bielmyer G.K. (2013). Toxicity of ZnO nanoparticles to the copepod Acartia tonsa, exposed through a phytoplankton diet. Environmental Toxicology and Chemistry, 32(6): 1264-1269.

Kennari A., Ahmadifard N., Kapourchali M., Seyfabadi J. (2008). Effect of two microalgae concentrations on body size and egg size of the rotifer Brachionus calyciflorus. Biologia, 63(3): 407-411.

Khoshnood R., Jaafarzadeh N., Jamili S., Farshchi P., Taghavi L. (2017). Acute toxicity of TiO2, CuO and ZnO nanoparticles in brine shrimp, Artemia franciscana. Iranian Journal of Fisheries Sciences, 16(4): 1287-1296.

Kirk K.L. (1997). Life‐history responses to variable environments: starvation and reproduction in planktonic rotifers. Ecology, 78(2): 434-441.

Krebs C.J. (1995). Two paradigms of population regulation. Wildlife Research, 22(1): 1-10.

Lam I.K., Wang, W.-X. (2008). Trace element deficiency in freshwater cladoceran Daphnia magna. Aquatic Biology, 1(3): 217-224.

Lowry O.H., Lopez J.A. (1946). The determination of inorganic phosphate in the presence of labile phosphate esters. Journal of Biological Chemistry, 162: 421-428.

Luna-Andrade A., Aguilar-Duran R., Nandini S., Sarma S. (2002). Combined effects of copper and microalgal (Tetraselmis suecica) concentrations on the population growth of Brachionus plicatilis Müller (Rotifera). Water, Air, and Soil Pollution, 141(1-4): 143-153.

Ma H., Williams P.L., Diamond S.A. (2013). Ecotoxicity of manufactured ZnO nanoparticles–a review. Environmental Pollution, 172: 76-85.

Manfra L., Rotini A., Bergami E., Grassi G., Faleri C., Corsi I. (2017). Comparative ecotoxicity of polystyrene nanoparticles in natural seawater and reconstituted seawater using the rotifer Brachionus plicatilis. Ecotoxicology and Environmental Safety, 145: 557-563.

Manusadžianas L., Caillet C., Fachetti L., Gylytė B., Grigutytė R., Jurkonien S., Vitkus R. (2012). Toxicity of copper oxide nanoparticle suspensions to aquatic biota. Environmental Toxicology and Chemistry, 31(1): 108-114.

Rubio-Franchini I., Rico-Martínez R. (2011). Evidence of lead biomagnification in invertebrate predators from laboratory and field experiments. Environmental Pollution, 159(7): 1831-1835.

Sarkheil M., Johari S.A., An H.J., Asghari S., Park H.S., Sohn E.K., Yu I.J. (2018). Acute toxicity, uptake, and elimination of zinc oxide nanoparticles (ZnO NPs) using saltwater microcrustacean, Artemia franciscana. Environmental Toxicology and Pharmacology, 57: 181-188.

Sarma S., Resendiz R.A.L., Nandini S. (2011). Morphometric and demographic responses of brachionid prey (Brachionus calyciflorus Pallas and Plationus macracanthus (Daday)) in the presence of different densities of the predator Asplanchna brightwellii (Rotifera: Asplanchnidae). Hydrobiologia, 662(1): 179-187.

Snell T.W., Hicks D.G. (2011). Assessing toxicity of nanoparticles using Brachionus manjavacas (Rotifera). Environmental Toxicology, 26(2): 146-152.

Suthers I.M., Rissik D. (2009). Plankton: A guide to their ecology and monitoring for water quality. CSIRO publishing. 273 p.

Templeton R.C., Ferguson P.L., Washburn K.M., Scrivens W.A., Chandler G.T. (2006). Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environmental Science and Technology, 40(23): 7387-7393.

Wong S.W., Leung P.T., Djurišić A., Leung K.M. (2010). Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and Bioanalytical Chemistry, 396(2): 609-618.


  • There are currently no refbacks.