Assessment of the embryotoxic potential of contaminated sediments using fish embryotoxicity tests for the river Buriganga, Dhaka, Bangladesh
Downloads
Sediment samples from six different locations of Buriganga River following exposure to eggs and larvae displayed prominent effects on both whole sediments and sediment organic extracts. The acute and sublethal effects during 96 h exposure period included (i) a significant (P<0.05) increase in morality and abnormalities in zebrafish eggs and embryos; (ii) a significant (P<0.05) reduction in hatching success and heart rate; (iii) increased frequency of helical tail and lordosis after 96 h exposure to sediment extracts; (iv) developmental delay and yolk sac edema after exposed to whole sediments at 96h exposure period. Chemical analysis showed the increased concentrations of heavy metals (Zn, Cr, Cu, Pb, and Cd) in downstream (S1, S2, and S3) compared to upstream (S4, S5, and S6), where some ions such as Cd and Cr exceeded the Environmental Protection Agency’s Threshold Effect Level (EPA TEL). The current study delineates the contamination of extremely toxic compounds in the sediment of Buriganga River, which may initiate toxic effects on the early life stages of fish. Therefore, integrating zebrafish embryo toxicity tests may be crucial for evaluating the sediment quality of polluted rivers.
Downloads
Ahlf W. (1995). Aquatische Okotoxikologie: Biotests an Sedimenten. Handbuch Angewandte Limnologie. Ecomed, München Landsberg, Germany, 3-43.
Ahmad M.K., Islam S., Rahman S., Haque M., Islam M.M. (2010). Heavy metals in water, sediment and some fishes of Buriganga River, Bangladesh. International Journal of Environmental Research, 4(2): 321-332.
Ahmed F., Fakhruddin A.N.M., Imam M.T., Khan N., Khan T.A., Rahman M.M., Abdullah A.T.M. (2016). Spatial distribution and source identification of heavy metal pollution in roadside surface soil: a study of Dhaka Aricha highway, Bangladesh. Ecological Processes, 5: 1-16.
Alam A.M.S., Islam M.A., Rahman M.A., Siddique M.N., Matin M.A. (2003). Comparative study of water of the rivers and estuaries of Sundarban mangrove forest. Pollution Research, 24(2): 463-472.
Ansari S., Ansari B.A. (2015). Effects of heavy metals on the embryo and larvae of Zebrafish, Danio rerio (Cyprinidae). Scholars Academic Journal of Biosciences, 3(1B): 52-56.
Asaduzzaman M., Hasan I., Rajia S., Khan N., Kabir K.A. (2016). Impact of tannery effluents on the aquatic environment of the Buriganga River in Dhaka, Bangladesh. Toxicology and Industrial Health, 32(6): 1106-1113.
Babi? S., Bariši? J., Viši? H., Klobu?ar R.S., Popovi? N.T., Strunjak-Perovi? I., ?ož-Rakovac R., Klobu?ar G. (2017). Embryotoxic and genotoxic effects of sewage effluents in zebrafish embryo using multiple endpoint testing. Water Research, 115: 9-21.
Bangladesh Economic Review. (2017). Economic Adviser’s Wing, Finance Division, Ministry of Finance, Government of the People’s Republic of Bangladesh. Retrieved December 2, 2018, from https://mof.gov.bd/site/page/44e399b3-d378-41aa-86ff 8c4277eb0990/BangladeshEconomicReview.
Bartzke M., Delov V., Stahlschmidt-Allner P., Allner B., Oehlmann J. (2010). Integrating the fish embryo toxicity test as triad element for sediment toxicity assessment based on the Water Framework Directive approach. Journal of Soils and Sediments, 10(3): 389-399.
Braunbeck T., Lammer E. (2006.) Draft detailed review paper on fish embryo toxicity assay. Report prepared to the German Federal Environmental Agency (UBA Contract Number 203 85 422). Environmental Science Pollution Research, 15: 394-404.
Burton G.A., Denton D.L., Ho K., Ireland D.S. (1995). Sediment toxicity testing issues and methods. Handbook of Ecotoxicology, 5: 70-103.
Capriello T., Grimaldi M.C., Cofone R., D'Aniello S., Ferrandino I. (2019). Effects of aluminium and cadmium on hatching and swimming ability in developing zebrafish. Chemosphere, 222: 243-249.
Cheng S.H., Wai A.W.K., So C.H., Wu R.S.S. (2000). Cellular and molecular basis of cadmium?induced deformities in zebrafish embryos. Environmental Toxicology and Chemistry: An International Journal, 19(12): 3024-3031.
Cormier B., Gambardella C., Tato T., Perdriat Q., Costa E., Veclin C., Le Bihanic F., Grassl B., Dubocq F., Kärrman A., Cachot J. (2021). Chemicals sorbed to environmental microplastics are toxic to early life stages of aquatic organisms. Ecotoxicology and Environmental Safety, 208: 111665.
Dar O.I., Sharma S., Singh K., Kaur A. (2019). Teratogenicity and accumulation of triclosan in the early life stages of four food fish during the bioassay. Ecotoxicology and Environmental Safety, 176: 346-354.
Dekker T., Greve G.D., Ter Laak T.L., Boivin M.E., Veuger B., Gortzak G., Dumfries S., Lu¨cker S.M.G., Kraak M.H.S., Admiraal W., Van der Geest H.G. (2006). Development and application of a sediment toxicity test using the benthic cladoceran Chydorus sphaericus. Environmental Pollution, 140(2): 231-238.
Dong C.D., Chen C.F., Chen C.W. (2012). Contamination of zinc in sediments at river mouths and channel in northern Kaohsiung Harbor, Taiwan. International Journal of Environmental Science and Development, 3(6): 517.
Engwall M., Brunstro¨m B., Brewer A., Norrgren L. (1994). Cytochrome p450IA induction by coplanar PCB, a PAH mixture, and PCB-contaminated sediment extracts following microinjection of rainbow trout sac-fry. Aquatic Toxicology, 30(4): 311-324.
Ensenbach U., Nagel R. (1995). Toxicity of complex chemical mixtures: acute and long-term effects on different life stages of zebrafish (Brachydanio rerio). Ecotoxicology and Environmental Safety, 30(2): 151-157.
Geffard O., Budzinski H., Augagneur S., Seaman M.N., His E. (2001). Assessment of sediment contamination by spermiotoxicity and embryotoxicity bioassays with sea urchins (Paracentrotus lividus) and oysters (Crassostrea gigas). Environmental Toxicology and Chemistry: An International Journal, 20(7): 1605-1611.
Gouva E., Nathanailides C., Skoufos I., Paschos I., Athanassopoulou F., Pappas I.S. (2020). Comparative study of the effects of heavy metals on embryonic development of zebrafish. Aquaculture Research, 51(8): 3255-3267.
Hallare A.V., Kosmehl T., Schulze T., Hollert H., Köhler H.R., Triebskorn R. (2005). Assessing contamination levels of Laguna Lake sediments (Philippines) using a contact assay with zebrafish (Danio rerio) embryos. Science of the Total Environment, 347(1-3): 254-271.
Harris A.R., Pickering A.J., Harris M., Doza S., Islam M.S., Unicomb L., Luby S., Davis J., Boehm A.B. (2016). Ruminants contribute fecal contamination to the urban household environment in Dhaka, Bangladesh. Environmental Science and Technology, 50(9): 4642-4649.
Ho K.T.Y., Quinn J.G. (1993). Physical and chemical parameters of sediment extraction and fractionation that influence toxicity as evaluated by Microtox. Environmental Toxicology and Chemistry, 12(4): 615-625.
Hollert H., Heise S., Pudenz S., Brüggemann, R., Ahlf W., Braunbeck T. (2002). Application of a sediment quality triad and different statistical approaches (Hasse diagrams and fuzzy logic) for the comparative evaluation of small streams. Ecotoxicology, 11(5): 311-321.
Hollert H., Keiter S., König N., Rudolf M., Ulrich M., Braunbeck T. (2003). A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. Journal of Soils and Sediments, 3(3): 197-207.
Islam S., Ahmed K., Al-Mamun H., Masunaga S. (2015a). Assessment of trace metals in fish species of urban rivers in Bangladesh and health implications. Environmental Toxicology and Pharmacology, 39(1): 347-357.
Islam M.S., Ahmed M.K., Habibullah-Al-Mamun M., Hoque M.F. (2015b). Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environmental Earth Sciences, 73(4): 1837-1848.
Jezierska B., ?ugowska K., Witeska M. (2009). The effects of heavy metals on embryonic development of fish (a review). Fish Physiology and Biochemistry, 35(4): 625-640.
Kim H.S., Kim Y.J., Seo Y.R. (2015). An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. Journal of Cancer Prevention, 20(4): 232.
Kimmel C.B., Ballard W.W., Kimmel S.R., Ullmann B., Schilling T.S. 1995. Stages of embryonic development of the zebrafish. Developmental Dynamics, 203(3): 253-310.
Kuster E., Altenburger R. (2008). Oxygen decline in biotesting of environmental samples––Is there a need for consideration in the acute zebrafish embryo assay? Environmental Toxicology, 23(6): 745-750.
Landrigan P.J., Fuller R., Acosta N.J., Adeyi O., Arnold R., Baldé A.B., Bertollini R., Bose-O'Reilly S., Boufford J.I., Breysse P.N., Chiles T. (2018). The lancet commission on pollution and health. Lancet, 391(10119): 462-512.
Luckenbach T., Oberemm A., Müller E., Triebskorn R. (1999). Untersuchungen zur Wirkung anthropogener Gewässerbelastungen auf die Entwicklung von Bachforellen (Salmo trutta fario L.). Ökotoxikologie. Ökosystemare Ansätze und Methoden, Ecomed Verlagsgesellschft, Landsberg, 399-407.
Lee J., Hong S., Kim T., Lee C., An S.A., Kwon B.O., Lee S., Moon H.B., Giesy J.P., Khim J.S. (2020). Multiple bioassays and targeted and nontargeted analyses to characterize potential toxicological effects associated with sediments of Masan Bay: Focusing on AhR-mediated potency. Environmental Science and Technology, 54(7): 4443-4454.
Li M., Zhang Q., Sun X., Karki K., Zeng C., Pandey A., Rawat B., Zhang F. (2020). Heavy metals in surface sediments in the trans-Himalayan Koshi River catchment: Distribution, source identification and pollution assessment. Chemosphere, 244: 125410.
Mennillo E., Adeogun A.O., Arukwe A. (2020). Quality screening of the Lagos lagoon sediment by assessing the cytotoxicity and toxicological responses of rat hepatoma H4IIE and fish PLHC-1 cell-lines using different extraction approaches. Environmental Research, 182: 108986.
Michibata H. (1981). Uptake and distribution of cadmium in the egg of the teleost, Oryzias latipes. Journal of Fish Biology, 19(6): 691-696.
Rahman M.A., Bakri D.A. (2010). A Study on Selected Water Quality Parameters along the River Buriganga, Bangladesh. Iranica Journal of Energy and Environment, 1(2): 81-92.
Rawson D.M., Zhang T., Kalicharan D., Jogebloed W.L. (2001). Field emission scanning electron microscopy and transmission electron microscopy studies of the chorion, plasma membrane and syncytial layers of the gastrula-stage embryo of the zebrafish Brachy Danio rerio: a consideration of the structural and functional relationships with respect to cryoprotectant penetration. Aquaculture Research, 31(3): 325-336.
Ribeiro R.X., da Silva Brito R., Pereira A.C., Gonçalves B.B., Rocha T.L. (2020). Ecotoxicological assessment of effluents from Brazilian wastewater treatment plants using zebrafish embryotoxicity test: A multi-biomarker approach. Science of the Total Environment, 735: 139036.
Samson J.C., Shenker J. (2000). The teratogenic effects of methylmercury on early development of the zebrafish Danio rerio. Aquatic Toxicology, 48(2-3): 343-354.
Schiwy S., Bräunig J., Alert H., Hollert H., Keiter S. H. (2015). A novel contact assay for testing aryl hydrocarbon receptor (Ah-R) mediated toxicity of chemicals and whole sediments in zebrafish (Danio rerio) embryos. Environmental Science and Pollution Research, 22(21): 16305-16318.
Schweizer M., Dieterich A., Morillas N.C., Dewald C., Miksch L., Nelson S., Wick A., Triebskorn R., Köhler H.R. (2018). The importance of sediments in ecological quality assessment of stream headwaters: embryotoxicity along the Nidda River and its tributaries in Central Hesse, Germany. Environmental Sciences Europe, 30(1): 1-18.
Strmac M., Oberemm A., Braunbeck T. (2002). Effects of sediment eluates and extracts from differently polluted small rivers on zebrafish embryos and larvae. Journal of Fish Biology, 61(1): 24-38.
Suter G.W., Rosen A.E., Linder E., Parkhurst D.F. (1987). Endpoints for response of fish to chronic toxic exposure. Environmental Toxicology and Chemistry, 6(10): 793-809.
Thellmann P., Köhler H.R., Rößler A., Scheurer M., Schwarz S., Vogel H.J., Triebskorn R. (2015). Fish embryo tests with Danio rerio as a tool to evaluate surface water and sediment quality in rivers influenced by wastewater treatment plants using different treatment technologies. Environmental Science and Pollution Research, 22(21): 16405-16416.
Van Leeuwen C.J., Griffioen P.S., Vergouw W.H.A., Maas-Diepeveen J.L. (1985). Differences in susceptibility of early life stages of rainbow trout (Salmo gairdneri) to environmental pollutants. Aquatic Toxicology, 7(1-2): 59-78.
Van Leeuwen C.J. (1995). Ecotoxicological effects. In: Van Leeuwen C.J., Hermens J.L.M. (Eda.). Risk Assessment of Chemicals––An Introduction. Dordrecht: Kluwer Academic Publishers. pp: 204-205.
Viganò L., De Flora S., Gobbi M., Guiso G., Izzotti A., Mandich A., Mascolo G., Roscioli C. (2015b). Exposing native cyprinid (Barbus plebejus) juveniles to river sediments leads to gonadal alterations, genotoxic effects and thyroid disruption. Aquatic Toxicology, 169: 223-239.
Viganò L., Mascolo G., Roscioli C. (2015a) Emerging and priority contaminants with endocrine active potentials in sediments and fish from the River Po (Italy). Environmental Science and Pollution Research, 22: 14050-14066.
Viganò L., Casatta N., Farkas A., Mascolo G., Roscioli C., Stefani F., Vitelli M., Olivo F., Clerici L., Robles P., Dellavedova P. (2020). Embryo/larval toxicity and transcriptional effects in zebrafish (Danio rerio) exposed to endocrine active riverbed sediments. Environmental Science and Pollution Research, 1-19.
Von Nagel R. (1986). Untersuchungen zur Eiproduktion beim Zebrabärbling (Brachydanio rerio, Ham.?Buch.). Journal of Applied Ichthyology, 2(4): 173-180.
Wang S., Zhuang C., Du J., Wu C., You H. (2017). The presence of MWCNTs reduces developmental toxicity of PFOS in early life stage of zebrafish. Environmental Pollution, 222: 201-209.
Whitehead P., Bussi G., Hossain M.A., Dolk M., Das P., Comber S., Peters R., Charles K.J., Hope R., Hossain M.S. (2018). Restoring water quality in the polluted Turag-Tongi-Balu river system, Dhaka: Modelling nutrient and total coliform intervention strategies. Science of the Total Environment, 631: 223-232.
Whitehead P.G., Bussi G., Peters R., Hossain M.A., Softley L., Shawal S., Jin L., Rampley C.P.N., Holdship P., Hope R., Alabaster G. (2019). Modelling heavy metals in the Buriganga River system, Dhaka, Bangladesh: impacts of tannery pollution control. Science of the Total Environment, 697: 134090.
Williams N.D., Holdway D.A. (2000). The effects of pulse-exposed cádmium and zinco n embryo hatchability, larval development, and survival of Australian crimson spotted rainbow fish (Melanotaenia fluviatilis). Environmental Toxicology, 15(3): 165-173.
Wu L., Chen L., Hou J., Zhang Y., Zhao J., GAO H. (2010). Assessment of sediment quality of Yangtze River estuary using zebrafish (Danio rerio) embryos. Environmental Toxicology, 25(3): 234-242.
Yang G., Song Z., Sun X., Chen C., Ke S., Zhang J. (2020). Heavy metals of sediment cores in Dachan Bay and their responses to human activities. Marine Pollution Bulletin, 150: 110764.
Yi Y.J., Zhang S.H. (2012). The relationships between fish heavy metal concentrations and fish size in the upper and middle reach of Yangtze River. Procedia Environmental Sciences, 13: 1699-1707.
Zeng J., Han G., Yang K. (2020). Assessment and sources of heavy metals in suspended particulate matter in a tropical catchment, northeast Thailand. Journal of Cleaner Production, 265: 121898.
Copyright (c) 2022 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.