Effects of penconazole and copper nanoparticle fungicides on redbelly tilapia, Coptodon zillii (Gervais, 1848): Reproductive outcomes

Mahmoud M.S. Farrag, Rashad E. Said, Ibtisam M.H. Elmileegy, Nasser S. Abou Khalil, Eman S.A. Abdel allah, Mohamed F. El-Sawy, Alaa G.M. Osman


Several effective fungicides have recently been applied, but they can harm ecosystems and non-target organisms. The findings of this study should be helpful to evaluate the reproductive response of redbelly tilapia, Coptodon zillii, of both sexes upon exposure to 0.8 and 1.6 μg/L penconazole and 7.5 and 15 mg/L copper nanoparticle as fungicides for three months. The gonadosomatic index of males increased in the penconazole groups in parallel with testosterone. A significant increase was observed in estradiol and progesterone of penconazole and copper nanoparticle groups. In testicular homogenate, there was a significant decrease in superoxide radical in penconazole (I) and penconazole (II) groups and CAT of penconazole (I) and copper nanoparticle (I) groups, along with a significant increase in nitric oxide (NO) of Cu-NP (II) group. In ovarian homogenate, a significant increase in NO of penconazole (I) group and lipid peroxides of copper nanoparticle (I) group, along with decrease in CAT of penconazole (II) and copper nanoparticle (I) groups and SOD of penconazole (II) and copper nanoparticle (I) groups were found. The histopathological examination indicated gross deteriorations in the gonads of fish exposed to the fungicides except in the copper nanoparticle (II) group. These findings suggested the reproductive burden in C. zillii following exposure to the investigated fungicides by disrupting gonadal sex hormones and inducing redox imbalance and cytopathological abnormalities. It is recommended to reduce the flow of these materials to aquatic areas particularly the natural fisheries and artificial hatcheries.


Penconazole, Copper nanoparticles, Antioxidant, Histopathology.

Full Text:



Abdel-Khalek A.A., Kadry M.A.M., Badran S., Marie M.-A.S. (2015). Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: Biochemical and oxidative stress. The Journal of Basic and Applied Zoology, 72: 43-57.

Aebi H. (1984). Catalase in vitro. Methods in Enzymology, 105: 121-126.

Aluko P.O., Ali M.H. (2001). Production of Eight Types of Fast Growing Intergeneric Hybrids from Four Clariid Species. Journal of Aquacuture in the Topics, 16: 139-148

Baudiffier D., Hinfray N., Ravaud C., Creusot N., Chadili E., Porcher J.M., Schulz R.W., Brion F. (2013). Effect of in vivo chronic exposure to clotrimazole on zebrafish testis function. Environmental Science and Pollution Research (international), 20(5): 2747-2760.

Bautista A.P. (2002). Chronic alcohol intoxication primes Kupffer cells and endothelial cells for enhanced CC-chemokine production and concomitantly suppresses phagocytosis and chemotaxis. Frontiers in Bioscience, 7: 117-125.

Bhat M., Wani A.A., Mukhtar M., Sherwani A., Bhat A.H., Showkat A. (2015). Dissipation patterns of the fungicide difenoconazole (25% EC) in apples grown in Kashmir, India. Environmental Monitoring and Assessment, 187(7): 398.

Blazer V.S., Denslow N.D., Dethloff G. M., Gross T. S., McDonald K.K., Schmitt C.J., Tillitt D.E., Whyte J.J. (2000). Biomonitoring of Environmental Status and Trends (BEST) Program: Selected methods for monitoring chemical contaminants and their effects in aquatic ecosystems. IN Schmitt C.J. Dethloff, G. M. (Eds.) Information and Technology Report. Reston, VA.

Cabizza M., Dedola F., Satta M. (2012). Residues behavior of some fungicides applied on two greenhouse tomato varieties different in shape and weight. Journal of Environmental Science and Health, Part B, 47(5): 379-384.

Chu S.H., Liao P.H., Chen P.J. (2016). Developmental exposures to an azole fungicide triadimenol at environmentally relevant concentrations cause reproductive dysfunction in females of medaka fish. Chemosphere, 152: 181-189

Cren E.D.L. (1951). The Length-Weight Relationship and Seasonal Cycle in Gonad Weight and Condition in the Perch (Perca fluviatilis). The Journal of Animal Ecology, 20(2): 201-219.

Dayal N., Thakur M., Patil P., Singh D., Vanage G., Joshi D.S. (2016). Histological and genotoxic evaluation of gold nanoparticles in ovarian cells of zebrafish (Danio rerio). Journal of Nanoparticle Research, 18(10): 291.

de Freitas F., Battirola L.D., Arruda R., de Andrade R.L.T. (2019). Assessment of the Cu (II) and Pb(II) removal efficiency of aqueous solutions by the dry biomass Aguape: kinetics of adsorption. Environ Monit Assess, 191(12): 751.

Ding A.H., Nathan C.F., Stuehr D.J. (1988). Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. The Journal of Immunology, 141(7): 2407-2412.

Dong X., Zhang L., Chen M., Yang Z., Zuo Z., Wang C. (2018). Exposure to difenoconazole inhibits reproductive ability in male marine medaka (Oryzias melastigma). Journal of Environmental Sciences-China, 63: 126-132.

Ghiselli A., Serafini M., Natella, F., Scaccini C. (2000). Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Biology and Medicine - Journal, 29(11): 1106-1114.

Güdücü H.E., İnam R., Aboul-Enein H.Y. (2011). Determination of Organophosphorus and Triazole Pesticides by Gas Chromatography and Application to Vegetable and Commercial Samples. Journal of Liquid Chromatography and Related Technologies, 34(19): 2473-2483.

Heinlaan M., Ivask A., Blinova I., Dubourguier H.C. Kahru A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7): 1308-1316.

Husak V.V., Mosiichuk N.M., Storey J.M., Storey K.B., Lushchak V.I. (2017). Acute exposure to the penconazole-containing fungicide Topas partially augments antioxidant potential in goldfish tissues. Comparative Biochemestry and Physiology Part C Toxicology and Pharmacology, 193: 1-8.

Icoglu Aksakal F., Ciltas A. (2018). Developmental toxicity of penconazole in Zebrfish (Danio rerio) embryos. Chemosphere, 200: 8-15.

Kaida T. (2004). Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. Journal of Cosmetic Science, 55: 219-220.

Kenyon D., Dixon G., Helfer S. (1997). The repression and stimulation of growth of Erysiphe sp. on Rhododendron by fungicidal compounds. Plant Pathology, 46(3): 425-431.

Khosravi-Katuli K., Prato E., Lofrano G., Guida M., Vale,G., Libralato G. (2017). Effects of nanoparticles in species of aquaculture interest. Environmental Science and Pollution Research (international), 24: (21): 17326-17346.

Kime D.E. (1999). A strategy for assessing the effects of xenobiotics on fish reproduction. Science of the Total Environment, 225(1-2): 3-11.

Levison D.A. (1997). Book Reviews: Theory and practice of histological techniques. 4th Edition. Johnd. Bancroft and A Lan Stevens. Churchill Livingstone, Edinburgh. 766 p.

Li, J., Sun, L., Zuo, Z., Chen, M., Geng H., Wang C. (2012). Exposure to paclobutrazol disrupts spermatogenesis in male Sebastiscus marmoratus. Aquatic Toxicology, 122-123, 120-124.

Li Z., Zlabek V., Velisek J., Grabic R., Machova J., Randak T. (2010a). Physiological condition status and muscle-based biomarkers in rainbow trout (Oncorhynchus mykiss), after long-term exposure to carbamazepine. Journal of Applied Toxicology, 30: (3): 197-203.

Li Z.H., Zlabek V., Grabic R., Li P., Machova J., Velisek J., Randak T. (2010b). Effects of exposure to sublethal propiconazole on the antioxidant defense system and Na+-K+-ATPase activity in brain of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 98(3): 297-303.

Liao P.H., Chu S.H., Tu T.Y., Wang X.H., Lin A.Y., Chen P.J. (2014). Persistent endocrine disruption effects in medaka fish with early life-stage exposure to a triazole-containing aromatase inhibitor (letrozole). Journal of Hazardous Materials, 277: 141-149.

Liu S.Y., Jin Q., Huang X.H. Zhu G.N. (2014). Disruption of zebrafish (Danio rerio) sexual development after full life-cycle exposure to environmental levels of triadimefon. Environmental Toxicology and Pharmacology, 37(1): 468-475.

Lowe-McConnell R.H. (2000). The roles of tilapias in ecosystems. In: M.C.M. Beveridge, B.J. McAndrew (eds.), Tilapias: Biology and exploitation, Kluwer Academic Publishers, Stirling. pp: 129-162.

Majewski, M., Lis, B., Olas, B., Ognik, K. Juskiewicz, J. (2020). Dietary supplementation with copper nanoparticles influences the markers of oxidative stress and modulates vasodilation of thoracic arteries in young Wistar rats. PLoS One, 15(2): e0229282.

Martin C.W., Valentine M.M., Valentine J.F. (2010). Competitive interactions between invasive Nile tilapia and native fish: the potential for altered trophic exchange and modification of food webs. PLoS One, 5: (12): e14395.

Misra H.P., Fridovich I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247(10): 3170-3175.

Mlambo S.S., van Vuren J.H., Barnhoorn I.E., Bornman M.S. (2009). Histopathological changes in the reproductive system (ovaries and testes) of Oreochromis mossambicus following exposure to DDT. Environmental Toxicology and Pharmacology, 28(1): 133-139.

Murugananthkumar R., Rajesh D., Senthilkumaran B. (2016). Copper Nanoparticles differentially target testis of the catfish, Clarias batrachus: In vivo and In vitro Study. Frontiers in Environmental Science, 4(67): 10.

Naeemi A.S., Elmi F., Vaezi G., Ghorbankhah M. (2020). Copper oxide nanoparticles induce oxidative stress mediated apoptosis in carp (Cyprinus carpio) larva. Gene Reports, 19: 100676.

Ohkawa, H., Ohishi, N. Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2): 351-358.

Pacher, P., Beckman, J. S. Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and disease. Physiological Reviews, 87(1): 315-424.

Podczasy, J., Wei R. (1988). Reduction of iodonitrotetrazolium violet by superoxide radicals. Biochemical and Biophysical Research Communications, 150(3): 1294-1301.

Rahman M.A., Hossain M.A., Ullah M.R., Iqbal M.M. (2020). Reproductive biology of Gagora catfish (Arius gagora) at Meghna river system, Kushiara River, Bangladesh. International Journal of Aquatic Biology, 8(6): 383-395.

Reinke L.A., Moore D.R., Nanji A.A. (2000). Pronounced hepatic free radical formation precedes pathological liver injury in ethanol-fed rats. Alcoholism: Clinical and Experimental Research, 24(3): 332-335.

Shen Z.G., Fan Q.X., Yang W., Zhang Y. L., Hu P.P. , Xie C.X. (2013). Effects of non-steroidal aromatase inhibitor letrozole on sex inversion and spermatogenesis in yellow catfish Pelteobagrus fulvidraco. Biology Bulletin, 225(1): 18-23.

Sirotki A.V., Radosova, M., Tarko A., Martin-Garcia I. Alonso F. (2020). Effect of morphology and support of copper nanoparticles on basic ovarian granulosa cell functions. Nanotoxicology, 14(5): 683-695.

Skolness S.Y., Blanksma C.A., Cavallin J.E., Churchill J.J., Durhan E.J., Jensen K.M., Johnson R.D., Kahl M. D., Makynen E.A., Villeneuve D.L., Ankley G.T. (2013). Propiconazole inhibits steroidogenesis and reproduction in the fathead minnow (Pimephales promelas). Toxicological Science, 132(2): 284-297.

Solomon, F. N. Ramnarine, I. W. (2007). Reproductive biology of white mullet, Mugil curema (Valenciennes) in the Southern Caribbean. Fisheries Research, 88(1-3): 133-138.

Srikanth K., Pereira E., Duarte A.C., Rao J.V. (2016). Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Protoplasma, 253(3): 873-884.

Sturm M.G.D.L. (1978). Aspects of the biology of Scomberomorus maculatus (Mitchill) in Trinidad. Journal of Fish Biology, 13(2): 155-172.

Turner R. (1965). Acute toxicity: The determination of LD50. Screening methods in pharmacology. Academic Press, New York. pp: 61-63.

Valerio-Garcia R.C., Carbajal-Hernandez A.L., Martinez-Ruiz E.B., Jarquin-Diaz V.H., Haro-Perez C. Martinez-Jeronimo F. (2017). Exposure to silver nanoparticles produces oxidative stress and affects macromolecular and metabolic biomarkers in the goodeid fish Chapalichthys pardalis. Science of the Total Environment, 583: 308-318.

Wang J.J., Sanderson B.J., Wang H. (2007). Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutation Research, 628(2): 99-106.

Wang T., Long X., Cheng Y., Liu Z., Yan S. (2014). The potential toxicity of copper nanoparticles and copper sulphate on juvenile Epinephelus coioides. Aquatic Toxicology, 152: 96-104.

Wani M.Y., Hashim M.A., Nabi F., Malik M.A. (2011). Nanotoxicity: dimensional and morphological concerns. Advances in Physical Chemistry, 2011 450912.

Wu F., Lin L., Qiu J.W., Chen H., Weng S., Luan T. (2014). Complex effects of two presumably antagonistic endocrine disrupting compounds on the goldfish Carassius aumtus: a comprehensive study with multiple toxicological endpoints. Aquatic Toxicology, 155: 43-51.

Yang J., Hu S., Rao M., Hu L., Lei H., Wu Y., Wang Y., Ke D., Xia W., Zhu C.H. (2017). Copper nanoparticle-induced ovarian injury, follicular atresia, apoptosis, and gene expression alterations in female rats. International Journal of Nanomedicine, 12: 5959-5971.

Zhang C.H., Wang Y., Sun Q.Q., Xia L.L., Hu J.J., Cheng K., Wang X., Fu X.X. Gu H. (2018). Copper nanoparticles show obvious in vitro and in vivo reproductive toxicity via ERK mediated signaling pathway in female mice. International Journal of Biological Science, 14(13): 1834-1844.


  • There are currently no refbacks.