Effect of selected retinoids on carbohydrate metabolism in the freshwater monsoon prawn, Macrobrachium malcolmsonii
Downloads
Retinoic acid isomers such as 9 cis retinoic acid (9CRA) and all trans retinoic acid (ATRA) have been discovered in crustaceans. However, their physiological significance in the biological framework of crustaceans is unclear. The present study evaluates the effect of retinoic acid on the hemolymph glucose levels in the monsoon prawn, Macrobrachium malcolmsonii. Injection of 9CRA into intact prawns significantly elevated the hemolymph glucose levels in a dose-dependent and time-dependent manner. However, such hyperglycemic response in 9CRA-injected eyestalk ablated (ESX) prawns was not observed. No changes in the hemolymph glucose levels were noticed in ATRA-injected intact or ESX prawns. Bilateral ESX showed significant elevation in the total carbohydrates and glycogen levels with a significant reduction in the activity levels of phosphorylase activity in the crustacean hyperglycaemic hormone (CHH) target tissues, hepatopancreas and muscle of prawns. Injection of 9CRA into intact prawns showed significant elevation in the activity levels of phosphorylase activity with a concomitant decrease in the total carbohydrates and glycogen levels in the CHH target tissues compared to vehicle-injected prawns. No significant differences were observed in the selected biochemical variables in 9CRA-injected prawns over 9CRA-injected ESX prawns. The expression levels of CHH in the eyestalks of 9CRA-injected prawns were significantly elevated over its respective control. It can be concluded that 9CRA-induced hyperglycemia, at least in part, mediates CHH in M. malcolmsonii.
Downloads
Andre A., Ruivo R., Gesto M., Castro L.F.C., Santos M.M. (2014). Retinoid metabolism in invertebrates: When evolution meets endocrine disruption. General and Comparative Endocrinology, 208: 134-145.
Asazuma H., Nagata S., Kono M., Nagasawa H. (2007). Molecular cloning and expression analysis of ecdysone receptor and retinoid X receptor from the kuruma prawn, Marsupenaeus japonicas. Comparative Biochemistry and Physiology Part B Biochemical and Molecular Biology, 148(2): 139-150.
Blumentrath J., Neye H., Verspohl E.J. (2001). Effects of retinoids and thiazolidinediones on proliferation, insulin release, insulin mRNA, GLUT 2 transporter protein and mRNA of INS-1 cells. Cell Biochemistry and Function, 19(3): 159-169.
Carroll N.V., Longley N.N., Roe J.G. (1956). Determination of Glycogen in liver and muscle by use of anthrone reagent. Journal of Biological Chemistry, 220(2): 583-593.
Chandler J.C., Gandhi N.S., Ricardo L., Mancera R.L., Smith G., Elizur A., Ventura T. (2017). Understanding Insulin Endocrinology in Decapod Crustacea: Molecular Modelling Characterization of an Insulin-Binding Protein and Insulin-Like Peptides in the Eastern Spiny Lobster, Sagmariasus verreauxi. Internal Journal of Molecular Sciences, 18(9): 1832.
Chang E.S., Keller R., Chang S.A. (1998). Quantification of crustacean hyperglycemic hormone by ELISA in hemolymph of the lobster, Homarus americanus, following various stresses. General and Comparative Endocrinology, 111(3): 359-366.
Chen S.H., Lin C.Y., Kuo C.M. (2004). Cloning of Two Crustacean Hyperglycemic Hormone Isoforms in Freshwater Giant Prawn (Macrobrachium rosenbergii): Evidence of Alternative Splicing. Marine Biotechnology, 6: 83-94.
Chen W., Chen G. (2014). The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism. Journal of Clinical Biology, 3: 453-479.
Chertow B.S., Driscoll H.K., Goking N.Q., Primerano D., Cordle M.B., Matthews K.A. (1997). Retinoid-X Receptors and the Effects of 9-Cis-Retinoic Acid on Insulin Secretion from RINm5F Cells. Metabolism, 46(6): 656-660.
Chung J.S., Zmora N., Katayama H., Tsutsui N. (2010). Crustacean hyperglycemic hormone (CHH) neuropeptides family: Functions, titer, and binding to target tissues. General and Comparative Endocrinology, 166(3): 447-454.
Clagett-Dame M., Knutson D. (2011). Vitamin A in reproduction and development. Nutrients, 4:385-428.
Clark A.R., Wilson M.E., London N.J., James R.F., Docherty K. (1995). Identification and characterization of a functional retinoic acid/thyroid hormone-response element upstream of the human insulin gene enhancer. Biochemical Journal, 309: 863-870.
Cori G.T., Keller P.G. (1955). Muscle phosphorylase. In: Methods in Enzymology (ed. by S.P. Colowick & N.O. Kaplan), Academic Press, New York. pp: 200-207. Cui J., Wu L., Chan S.M., Chu K.H. (2013). cDNA cloning and mRNA expression of retinoid-X-receptor in the ovary of the shrimp Metapenaeus ensis. Molecular Biology Reports, 40: 6233-6244.
Fanjal-moles M.L. (2006). Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans. Comparative Biochemistry Physiology Part C Toxicology, 142(3-4): 390-400.
Hoga C.A., Almeida F.F.L., Felix G.R.R. (2018). A review on the use of Hormones in fish farming: analytical methods to determine their residues. Cyta-Journal of Food, 16(1): 679-691.
Hopkins P.M., Durica D., Washington T. (2008). RXR isoforms and endogenous retinoids in the fiddler crab, Uca pugilator. Comparative Biochemistry and Physiology Part A, Molecular Integrative Physiology, 151(4): 602-614.
Huang X., Ye H., Feng B., Huang H. (2015). Insights into insulin-like peptide system in invertebrates from studies on IGF binding domain-containing proteins in the female mud crab, Scylla paramamosain. Molecular and Cellular Endocrinology, 416: 36-45.
Huang Y.Y.R., Zang J.Y.V., Wu C., Cheng G., Jia J., Wang L. (2016). Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. Neuroscience, doi:10.7554/eLife. 15693.
Kane M.A., Folias A.E., Pingitore A. (2010). Identification of 9-cis-retinoic acid as a pancreas-specific autacoid that attenuates glucose-stimulated insulin secretion. Proceedings of National Academic Sciences, 107(50): 21884-21889.
Katayama H., Ohira T., Aida K., Nagasawa H. (2002). Significance of a carboxyl-terminal amide moiety in the folding and biological activity of crustacean hyperglycemic hormone. Peptides, 23(9):1537-1546.
Komali M., Kalarani V., Venkatrayulu C.H., Reddy, D.C.S. (2005). Hyperglycemic effects of 5-hydroxytryptamine and dopamine in the freshwater prawn, Macrobrachium malcolmsonii. Journal of Experimental Zoology, 303(6): 448-455.
Kuo C.M., Yang Y.H. (1999). Hyperglycemic responses to cold shock in the freshwater giant prawn, Macrobrachium rosenbergii. Journal of Comparative Physiology,169:49-54.
Li S.S., Tsai H.J. (2000). Transfer of foreign gene to giant freshwater prawn (Macrobrachium roesenbergii). Molecular and Reproductive Development, 56(2): 149-154.
Li P., Oh D.Y., Gautam B., William S.L., Saswata T., Olivia O., Andrew J., Heekyung C., Rafael M., Michael M., Jachelle M.O., Sayaka T., Min L., Jerrold M.O. (2015). LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nature Medicine, 21: 239-247.
Li W.W., Ouyang Y.H. (2017). Immunological and Prognostic Effects of Short-Term Intensive Glucose Control on Severe Infection Complicated with Stress Hyperglycemia. Journal of Immunology, 33: 896-899.
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193: 265-275.
Macejova D., Toporova L., Brtko J. (2016). The role of retinoic acid receptors and their cognate ligands in reproduction in a context of triorganotin based endocrine disrupting chemicals. Endocrine Regulations, 50(3):154-164.
Mangelsdorf D.J., Thummel C., Beato M., Herrlich P., Schiitq G., Umesono K., Blumberg B., Kastner P., Mark M., Chambon P., Evan R.M. (1995). The Nuclear Receptor Superfamily: The Second Decade. Cell, 83: 835-839.
Mishra P., Chandra B.P., Pandey A.K., Kanaujia D.R. (2014). Growth and Production of Indian River Prawn Macrobrachium Malcolmsonii, In Monoculture System. Journal of Experimental Zoology, 17(2): 525-530.
Nagaraju G.P.C., Rajitha B., Borst D.W. (2011). Molecular cloning and sequence of retinoid X receptor in the green crab Carcinus maenas: a possible role in female reproduction. Journal of Endocrinology, 210: 379-390.
Nithya V., Kottickal L.V., Mohamed U.V.K. (2013). Elevation of Glucose on The Ablation of Single Eyestalk of the Giant Fresh Water Prawn, Macrobrachium Rosenbergii. International of Fisheries and Aquatic Studies, 3:183-189.
Ohira T. (2016). Chapter 53- Hypergiycemic Hormone. Comparative Endocrinology Basic Clinical Research, 53: 403-404.
Pan J., Guleria R.S., Zhu S., Baker KM. (2014). Molecular Mechanisms of Retinoid Receptors in Diabetes-Induced Cardiac Remodeling. Journal of Clinical Medicine, 3(2): 566-594.
Pillai B.R., Sahoo L., Sahu S., Vijaykumar S.M., Sahu S. (2010). Effect of unilateral Eyestalk ablation on ovarian maturation and occurrence of Berried Females in Macrobrachium rosenbergii, Indian Journal of Fisheries, 57(4): 77-80.
Rao G.O., Reddy P.R., Rao V.R., Ramakrishna R. (1986). Monoculture of Macrobrachium Malcolmsonii (H. Milne Edwards). Aquaculture, 53: 67-71.
Reddy P.S., Sainath S.B. (2008). Effect of retinoic acid on hemolymph glucose regulation in the fresh water edible crab, Oziotelphusa senex senex. General of Comparative Endocrinology, 155: 496-502.
Reddy P.S., Srilatha M. (2015). 13-Cis-Retinoic Acid-Induced Hyperglycemia in The Fresh Water Edible Crab, Oziothelphusa Senex Senex Is Mediated by Triggering Release of Hyperglycemic Hormone From Eyestalks. Journal of Aquaculture Research and Development, 6: 356.
Reddy P.S., Reddy P.R., Sainath S.B. (2011). Cadmium and mercury-induced hyperglycemia in the fresh water crab, Oziotelphusa senex senex: involvement of neuroendocrine system. Ecotoxicology and Environmental Safety, 74: 279-283.
Rhee E.J., Nallamshetty S., Wang H., Kiefer F.W., Brown J.D., Lotinun S., Le P., Baron R., Rosen C.J., Jorge Plutzky J. (2013). Deficiency of Retinaldehyde Dehydrogenase 1 Induces BMP2 and Increases Bone Mass in Vivo. PLoS ONE, 8: 71307.
Rosen O., Weil S., Manor R., Roth Z., Khalaila I., Sagi A. (2013). A crayfish Insulin-like-binding protein. The Journal of Biology Chemistry, 288: 22289-22298.
Sainath S.B., Reddy P.S. (2010). Melatonergic Regulation of Hemolymph Sugar Levels in the Freshwater Edible Crab, Oziotelphusa senex senex. Journal of Experimental Zoology, 313: 201-208.
Sainath S.B., Swetha C.H., Sreenivasula Reddy P. (2013). What do We (need to) know about the melatonin in crustaceans?. Journal of Experimental Zoology, 319: 365-377.
Sainz-Hernandez J.C., Racotta I.S., Dumas S., Hernandez-Lopez J. (2008). Effect of unilateral and bilateral eyestalk ablation in Litopenaeus Vannamei male and female on several metabolic and immunologic variables. Aquaculture, 283:188-193.
Soyez D. (1997). Occurrence and diversity of the neuropeptides from the crustacean hyperglycemic hormone in arthropods. A short review. Annals of New York Academy of Sciences, 814: 319-323.
Stentiford G.D., Chang E.S., Chang S.A., Neil D.M. (2001). Carbohydrate dynamics and the crustacean hyperglycemic hormone (CHH): Effects of parasitic infection in Norway lobsters (Nephrops norvegicus). Geneneral and Comparative Endocrinology, 121: 13-22.
Subbarow Y.J., Fiske C.H. (1925). The colorimetric determination of phosphorus. Biological Chemistry, 66: 375-400.
Sun L., Wu J., Du F., Chen X., Chen Z.J. (2013). Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway. Science, 339: 786.
Tang J., Zhu D.F., Cui X.Y., Xie X., Qiu X.E. (2014). Molecular cloning, characterization and expression analysis of the retinoid X receptor in the swimming crab, Portunus trituberculatus (Miers, 1876) (Decapoda, Portunidae). Internal Journal of Crustacean Research, 87: 312-327.
Telford M. (1975). Blood glucose in crayfish. III. The sources of glucose and role of the eyestalk factor in hyperglycemia of Cambarus robustus. Comparative Biochemistry Physiology, 51: 69-73.
Theodosiou M., Laudet V., Schubert M. (2010). From carrot to clinic: An overview of the retinoic acid signaling pathway. Cellular and Molecular Life Sciences, 67: 1423-1445.
Van Harreveld A. (1936). A physiological solution for freshwater crustaceans. Proceedings of the Society for Experimental Biology and Medicine, 34: 428-432.
Venkaiah K., Daveedu T., Sainath S.B. (2019). Detection and mode of action of retinoids on ovarian development in the mud crab, Scylla serrata. International Journal of Aquatic Biology, 7: 245-253.
Wang L., Hu C., Shao L. (2017). The antimicrobial activity of nanoparticles: present and prospects for the future. International Journal of Nanomedicine, 12: 1227-1249.
Wanlem S., Supamattaya K., Tantikitti C., Prasertsan P., Graidist P. (2011). Expression and applications of recombinant crustacean hyperglycemic hormone from eyestalks of white shrimp (Litopenaeus vannamei) against bacterial infection. Fish Shellfish Immunology, 30: 877-885.
Webster S.G. (1996). Measurement of crustacean hyperglycaemic hormone levels in the edible crab Cancer pagurus during emersion stress. Journal of Experimental Biology, 199: 1579-1585.
Wilcockson D.C., Chung J.S., Webster S.G. (2002). Is crustacean hyperglycemic hormone precursor-related peptide a circulating neurohormone in crabs? Cell and Tissue Research, 307: 129-138.
Yang X., Xu M., Huang G., Zhang C., Pang Y., Yang Z., Cheng Y. (2018). The hyperglycemic effect of melatonin in the Chinese Mitten Crab, Eriocheir sinensis. Frontiers Physiology, 9: 270.
Zhou Y., Wang H., Qiu S., Li H., Shen Z., Ding B., Luo M., Hung R., Yan R., Xu W., Zang Y., Li F., Sun Z., Ma J. (2021). Vitamin A and its Multi-Effects on Pancreas: Recent Advances and Prospects. Frontiers Endocrinology, 13(10): 10964-10976.
Zou E., Bonvillain R. (2003). Effects of 9-cis- and all-trans-retinoic acids on blood glucose homeostasis in the fiddler crab, Uca pugilator. Comparative Biochemistry and Physiology, 136: 199-204.
Copyright (c) 2023 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.