Paracentrotus lividus roe enhancement by a short-time rearing in offshore cages using two agar-based experimental feed

Adele Fabbrocini, Maria Grazia Volpe, Seyed Hossein Hoseinifar, Francesco Siano, Elena Coccia, Giuseppe Scordella, Cataldo Licchelli, Raffaele D'Adamo, Marina Paolucci


In this study, we tested the effect of two agar-based biocomposites (differing for the fish meal source), on the Paracentrotus lividus gonad cycle progression and biochemical composition, in an offshore pilot scale trial. The purpose of this study was to identify a feeding regime for P. lividus that would allow adequate gonadal growth without accelerating the gamete maturation, in order to extend the market period. The purpose was pursued through the use of agar as a binding agent in the manufacturing of biocomposites to be used as feed for P. lividus and the realization of special offshore cages. The gonad index, histology, biochemical composition of fatty acids (FA) and free amino acids (FAA) and volatile molecule fingerprint were evaluated. Both the gonad index and the histological analysis showed a slower gametogenesis progression in the gonads of caged sea urchins with respect to the field collected ones, consistent with our previous results obtained testing a similar feed composition in a recirculating system. The amount and the relative proportions of FA and FAA in the gonads of wild and cultured gonads were similar, while the analysis of the volatile substances of the gonads of the sea urchin conducted using the electronic nose, shows that they vary as a result of the different feeding treatments. These results show that P. lividus sea urchins can be housed, under this feeding regime during the recovery phase of the gonads, without acceleration of the maturation of the gametes and thus in conditions to allow the extension of the market period. Moreover, the here tested agar-based biocomposites make it possible to reduce the management costs of the rearing system as they need to be replaced only once a week, and its environmental impact as they guarantee a limited nutrient dispersion in the water.


Sea urchin, Paracentrotus lividus, Offshore cages, Sea urchin culture.

Full Text:



Akiyama T., Unuma T., Yamamoto T. (2001). Optimum protein level in a purified diet for young red sea urchin Pseudocentrotus depressus. Fisheries Science, 67: 361-363.

Arafa S., Chouaibi M., Sadok S., Abed A.E. (2012). The Influence of Season on the Gonad Index and Biochemical Composition of the Sea Urchin Paracentrotus lividus from the Golf of Tunis.The Scientific World Journal, Article ID 815935,

Azad A.K., Pearce C.M., McKinley S. (2011). Effects of diet and temperature on ingestion, absorption, assimilation, gonad yield, and gonad quality of the purple sea urchin (Strongylocentrotus purpuratus). Aquaculture, 317: 187-196.

Barker M.F., Keogh J.A., Lawrence J.M., Lawrence A.L. (1998). Feeding rate absorption efficiencies, growth, and enhancement of gonad production in the New Zealand sea urchin Evechinus chloroticus Valenciennes (Echinoidea: Echinometridae) fed prepared and natural diets. Journal of Shellfish Research, 17: 1583-1590.

Böttger S.A., Devin M.G., Walker C.W. (2006). Suspension of annual gametogenesis in North American green sea urchins (Strongylocentrotus droebachiensis) experiencing invariant photoperiod—Applications for land-based aquaculture. Aquaculture, 261: 1422-1431.

Bouduresque C.F., Verlaque M. (2013). Paracentrotus lividus. In: , J.M. Lawrence (Ed). Sea urchins: Biology and Ecology. Elsevier, Amsterdam, Netherlands. pp: 313-327.

Carboni S., Hughes A.D., Atack T., Tocher D.R., Migaud H. (2013). Fatty acid profiles during gametogenesis in sea urchin (Paracentrotus lividus): Effects of dietary inputs on gonad, egg and embryo profiles. Comparative Biochemistry and Physiology –Part A, 164: 376-382.

Coccia E., Santagata G., Malinconico M., Volpe M.G., Di Stasio M., Paolucci M. (2010). Juvenile crayfish Cherax albidus fed on polysaccharide based pellets: effects on growth. Freshwater Crayfish, 17:13-18.

Daggett T.L., Pearce C.M., Tingley M., Robinson S.M.C., Chopin T. (2005). Effect of prepared and macroalgal diets and seed stock source on somatic growth of juvenile green sea urchins (Strongylocentrotus droebachiensis). Aquaculture, 244: 263-281.

Fabbrocini A., D’Adamo R. (2010). Histological examination of the gonads of Paracentrotus lividus (Lmk, 1816) from the Southern Adriatic coast. Biologia Marina Mediterranea, 17: 272-273.

Fabbrocini A., D’Adamo R. (2011). Gamete and embryos of sea urchins (Paracentrotus lividus Lmk 1816) reared in confined conditions: their use in toxicity bioassays. Chemistry and Ecology, 27: 105-115.

Fabbrocini A., Volpe M.G., Di Stasio M., D’Adamo R., Maurizio D., Coccia E., Paolucci M. (2012). Agar-based pellets as feed for sea urchins (Paracentrotus lividus): rheological behavior, digestive enzymes and gonad growth. Aquaculture Research, 43: 321-331.

Fabbrocini A., Volpe M.G., Coccia E., D’Adamo R., Paolucci M. (2015). Agar-based Biocomposites slow down Progression in the Reproductive Cycle Facilitating Synchronization of the Gonads of Reared Specimens of Paracentrotus lividus. International Journal of Aquaculture and Fishery Science, 1: 35-41.

FAO. (2018). The State of World Fisheries and Aquaculture 2018 - Meeting the sustainable development goals. Rome. /3/i9540EN/i9540en.pdf

Fernandez C. (1997). Effect of diet on the biochemical composition of Paracentrotus lividus (Echinodermata: Echinoidea) under natural and rearing conditions (effect of diet on biochemical composition of urchins). Comparative Biochemistry and Physiology - A: Comparative Physiology, 118: 1377-1384.

Fernandez C., Pergent G. (1998). Effect of different formulated diets and rearing conditions on growth parameters in the sea urchin Paracentrotus lividus. Journal of Shellfish Research, 17: 1571-1581.

Kabeya N., Sanz-Jorquera A., Carboni S., Davie A., Oboh A., Monroig O. (2017). Biosynthesis of polyunsaturated fatty acids in sea urchins: Molecular and functional characterisation of three fatty acyl desaturases from Paracentrotus lividus (Lamark 1816). PLoS One, 12, e0169374.

Kennedy E.J., Robinson S.M.C., Parsons G.J., Castell J.D. (2007). Effects of dietary minerals and pigment on somatic growth of juvenile green sea urchins, Strongylocentrotus droebachiensis. Journal of World Aquaculture Society, 38: 36-48.

Laurienzo P., Cammarota G., Di Stasio M., Gentile G., Laurino C., Volpe M.G. (2013). Microstructure and olfactory quality of apples de-hydrated by innovative technologies. Journal of Food Engineering, 116: 689-694.

Lawrence J.M. (2007). Edible sea urchins: Biology and ecology, J.M. Lawrence (Ed). Elsevier Science.

Lourenço S., Valente L. M.P., Andrade C. (2018). Meta‐analysis on nutrition studies modulating sea urchin roe growth, colour and taste. Reviews in Aquaculture, 1-16.

Luo S., Zhao C., Chang Y., Feng W., Tian X. (2014). Banana peel provides a new insight into improving gonad flavor in the sea urchin Strongylocentrotus intermedius. Aquaculture International, 22: 833-841.

Marsh A.G., Powell M.L., Watts S.A. (2013). Biochemical and energy requirements of gonad development. In J. M. Lawrence (Ed.), Sea urchins: Biology and ecology (pp. 45–57). Amsterdam, the Netherlands: Elsevier. B978-0-12-396491-5.00004-6

Martinez-Pita I., Garcia F.J., Pita M.L. (2010). Males and females gonad fatty acids of the sea urchins Paracentrotus lividus and Arbacia lixula (Echinodermata). Helgoland Marine Research, 64: 135-142.

Matsiori S., Aggelopoulos S.,Tsoutsou A., Neofitou C., Soutsas K., Vafidis D. (2012). Environmental protection and sustainable development. Economic Value of Conservation. The Case of the Edible Sea Urchin Paracentrotus lividus. Journal of Environmental Protection and Ecology, 13: 269-274.

Mortensen A., Siikavuopio S.I., Raa J. (2004). Use of transglutaminase toproduce a stabile sea urchin feed. In: J.D. Lawrence (Ed). Sea Urchins-Fisheries and Ecology, DEStech Publications Inc, Landcaster, PA, USA. pp: 203-213.

Osako K., Fujii A., Ruttanapornvareesakul Y., Nagano N., Kuwahara K., Okamoto, A. (2007). Differences in free amino acid composition between testis and ovary of sea urchin Anthocidaris crassispina during gonadal development. Fisheries Science, 73: 660-667.

Otero-Villanueva M.M., Kelly M.S., BurnellG. (2004). How diet influences energy partitioning in the regular echinoid Psammechinus miliaris;constructing an energy budget. Journal of Experimental Marine Biology and Ecology, 304: 159-81.

Pais A., Serra S., Meloni G., SabaS., Ceccherelli G. (2012). Harvesting Effects on Paracentrotus lividus Population Structure: A Case Study from Northwestern Sardinia, Italy, before and after the Fishing Season. Journal of Coastal Research, 28: 570-575.

Paolucci M., Fabbrocini A., Volpe M.G., Varricchio E., CocciaE. (2012). Development of biopolymers as binders for feed for farmed aquatic organisms. Aquaculture/Book 1. InTech Open Access. pp: 4-34.

Paolucci M., Fasulo G., Volpe M.G. (2015). Functional biocomposites based on marine polysaccharides for aquaculture applications. Marine drugs, 13: 2680-2693.

Pearce C.M., Daggett T.L., Robinson S.M.C. (2002). Effect of binder type and concentration of prepared feed stability and gonad yield and quality of the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture, 205: 301-323.

Pearce C.M., Daggett T.L., Robinson S.M.C. (2004). Effect of urchin size and diet on gonad yield and quality in the green sea urchin (Strongylocentrotus droebachiensis). Aquaculture, 233: 337-367.

Rocha F., Baião F., Moutinho S., Reis B., Oliveira A., Arenas F., Maia M.R.G., Fonseca A.J.M., Pintado M., Valente L.M.P. (2019). The effect of sex, season and gametogenic cycle on gonad yield, biochemical composition and quality traits of Paracentrotuslividus along the North Atlantic coast of Portugal. Scientific Reports, 9: 2994.

Sanaka M.T., Yamamoto T., Anjiki H., Nagasawa K., Kuyama Y. (2007). Effects of agar and pectin on gastric emptying and post-prandial glycaemic profiles in healthy human volunteers. Clinical and Experimental Pharmacology and Physiology, 34: 1151-1155.

Shiau S-Y., Liang H-S. (1994). Nutrient digestibility and growth of hybrid tilapia, Oreochromis niloticus X O. aureus, as influenced by agar supplementation at two dietary protein levels Aquaculture, 127: 41-48.

Siliani S., Melis R., Loi B., Guala I., Baroli M., Sanna R., Uzzau S., Roggio T., Addis M.F., Anedda R. (2016). Influence of seasonal and environmental patterns on the lipid content and fatty acid profiles in gonads of the edible sea urchin Paracentrotus lividus from Sardinia. Marine Environment Research, 113: 124-133.

Secci M. (2014). Development of scientifically base management towards a sustainable fishery of the common sea urchin, Paracentrotus Lividus, in Sardinia. PhD thesis.

Schlosser S.C., Lupatsch I., Lawrence J.M., Lawrence A.L., Shpigel M. (2005). Protein and energy digestibility and gonad development of the European sea urchin Paracentrotus lividus (Lamarck) fed algal and prepared diets during spring and fall. Aquaculture Research, 36: 972-982.

Siikavuopio S.I., DaleT., Mortensen A. (2007). The effect of stock density on gonad growth, survival and feed intake of adult green sea urchin (Strongylocentrotus droebachiensis). Aquaculture, 262: 78-85.

Spirlet C., Grosjean P., Jangoux M. (2000). Optimization of gonad growth by manipulation of temperature and photoperiod in cultivated sea urchins, Paracentrotus lividus (Lamarck) (Echinodermata). Aquaculture, 185: 85-99.

Volpe M.G., Monetta M., Di Stasio M., Paolucci M. (2008). Rheological behavior of polysaccharide based pellets for crayfish feeding tested on growth in the crayfish Cherax albidus. Aquaculture, 274: 339-346.

Volpe M.G., Varricchio E., Coccia E., Santagata G., Di Stasio M., Malinconico M., Paolucci M. (2012). Manufacturing pellets with different binders: effect on water stability and feeding response in juvenile Cherax albidus. Aquaculture, 324-325: 104-110.

Volpe M.G., Santagata G., Coccia E., Di Stasio M., Malinconico M., Paolucci M. (2014). Pectin based pellets for crayfish aquaculture: structural and functional characteristics and effects on redclaw Cherax quadricarinatus performances. Aquaculture Nutrition, 21: 814-823.

Volpe M.G., Di Stasio M., Paolucci M., Moccia S. (2015). Polymers for Food Shelf-Life Extension. In G. Cirillo, U. G. Spizzirri, and F. Lemma (Eds). Functional Polymers in Food Science, Scrivener Publishing LLC. pp: 9-66.

Volpe M.G., Fabbrocini A., Siano F., Coccia E., Scordella G., Licchelli C., De Sio F., Paolucci M. (2018).Gonad quality of sea urchin Paracentrotus lividus cultured in an offshore pilot-scale trial on the south-east Italian coast. Aquaculture Nutrition, 24: 1444-1455.

Walker C., Unuma T., McGinn N., Harrington L., Lesser M.(2001). Reproduction of sea urchins. In J.M. Lawrence (Ed). Edible sea Urchins: Biology and Ecology. pp: 5-26.

Walker C.W., Böttger S.A., Unuma T., Watts S.A., Harris L.G., Lawrence A.L., Eddy S.D. (2015). Enhancing the commercial quality of edible sea urchin gonads – technologies emphasizing nutritive phagocytes. In: N.P. Brown, S.D. Eddy (eds). Echinoderm Aquaculture, John Wiley & Sons, Inc, Hoboken, NJ, USA.

Zupo V., Glaviano F., Paolucci M., Ruocco N., Polese G., Di Cosmo A., Costantini M., Mutalipassi M. (2018). Roe enhancement of Paracentrotus lividus: Nutritional effects of fresh and formulated diets. Aquaculture Nutrition, 2018: 1-13.


  • There are currently no refbacks.