Int. J. Aquat. Biol. (2025) 13(5): 44-49

ISSN: 2322-5270; P-ISSN: 2383-0956 Journal homepage: www.ij-aquaticbiology.com

© 2025 Iranian Society of Ichthyology

Original Article

New data on the parasites and parasite communities of *Rutilus rutilus* (Linnaeus, 1758) from the Danube River, Bulgaria

Radoslava Zaharieva*1, Petya Zaharieva1, Diana Kirin1,2

¹Hydrology and Water Management Research Center, National Institute of Geophysics, Geodesy and Geography (NIGGG), Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 3, Sofia, 1113, Bulgaria.

²Department of Chemistry, Phytopharmacy and Ecology, and Environmental Protection, Agricultural University-Plovdiv, 12 Mendeleev Blvd., Plovdiv, 4000, Bulgaria.

Abstract: The present study aims to provide new data on the parasites and the first data on the parasite communities of the roach *Rutilus rutilus* (Linnaeus, 1758) from the Bulgarian section of the Danube River. The fish were caught in 2019-2021 from three biotopes (Koshava, Kudelin, and Novo Selo). Fish samples were collected during spring, summer, and autumn. A total of 152 *R. rutilus* specimens were examined. Nine helminth species were isolated: three species of Trematoda, two Cestoda, two Acanthocephala, and two Nematoda. The component community and infracommunity of the roach from the Danube River, Kudelin biotope, were examined. *Rutilus rutilus* is a new host record for six helminth species in Bulgaria.

Article history:
Received 24 March 2025
Accepted 27 September 2025
Available online 25 October 2025

Keywords: Endoparasites Koshava Kudelin Novo Selo

Introduction

The Danube River passes through the territory of ten European countries. The river ranks second in length in Europe (Juhásová et al., 2019). The catchment area of the Danube River is the second largest in Europe, covering an area of 817,000 km² (Kotsev and Zhelezov, 2014). The Bulgarian section of the Danube River extends from 845 to 375 river km. Sixty-eight fish species have been reported for the Bulgarian section of the river (Zarev et al., 2013). Species of the family Cyprinidae are among the most common fish in Bulgarian water bodies (Zhelyazkov et al., 2018).

The parasites' life cycles occur with the hosts' participation (Hamood, 2021). Freshwater fish species serve as hosts for numerous parasite species (Docan et al., 2021). Studies on the parasite fauna of roach (*Rutilus rutilus*) in the Danube River are few. Parasitological studies on the species have been conducted in Romania (Stroe et al., 2021, 2022) and Bulgaria (Kakacheva-Avramova et al., 1978; Atanasov, 2012; Kirin et al., 2013). Research on parasites of roach caught from the river basin was

conducted on the territory of Slovakia (Hanzelová et al., 2009; Oros and Hanzelová, 2009), Serbia (Djikanovic et al., 2011), Romania (Docan et al., 2021), Bulgaria (Shukerova, 2010; Shukerova and Kirin, 2019), and others. Therefore, this study aims to present the results of a parasitological investigation on *R. rutilus* from the Kudelin, Novo Selo, and Koshava biotopes, as well as new data on the parasite communities of the roach from the Kudelin biotope, specifically the Danube River.

Materials and Methods

For 2019-2021, a parasitological examination of 152 *R. rutilus* specimens was carried out. The fish samples were collected from the Danube River in the vicinity of three villages. The sampling sites are designated as biotopes — Kudelin biotope (44°12'07.9"N 22°41'28.2"E), Novo selo biotope (44°08'56.0"N 22°48'56.0"E), and Koshava biotope (44°03'59.9"N 23°02'10.2"E) (Fig. 1).

Fish samples were collected in accordance with BDS EN 14757:2015. The catch was made in three

*Correspondence: Radoslava Zaharieva E-mail: radoslava.zaharieva7@gmail.com DOI: https://doi.org/10.22034/ijab.v13i5.2479

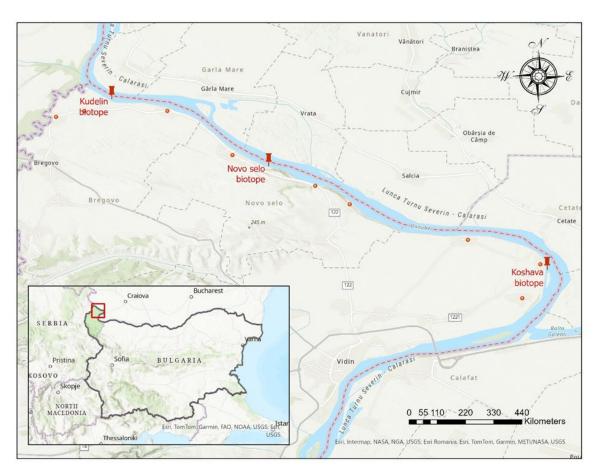


Figure 1. Location of the studied biotopes along the Danube River, Vidin Province, Northwestern Bulgaria

seasons (spring, summer, and autumn). The fish species was identified using proper references (Karapetkova and Zhivkov, 2006; Froese and Pauly, 2024). The roach, *Rutilus rutilus* (Linnaeus, 1758) (Cyprinidae), is a freshwater, brackish fish that inhabits water bodies rich in aquatic vegetation. It is an omnivorous species. The species' diet consists of crustaceans, insects, and aquatic vegetation. It is a widespread species in Bulgaria, found in the Danube River and its basin, as well as in some dams. The species is included in the IUCN Red List as "Least Concern" (Karapetkova and Zhivkov, 2006; Freyhof and Brooks, 2011).

Isolated acanthocephalans and nematodes were mounted on temporary slides with glycerin, while isolated trematodes and cestodes were mounted on permanent slides with Canada balsam (Dubinina, 1948; Scholz and Hanzelová, 1998; Moravec, 2013). A microscope (XS-213) was used to determine the taxonomic affiliation of the parasites. Parasite communities of the roach were represented at two

levels – component community and infracommunity. Species in the component community of the roach were divided into core (P% > 20), component (10 < P% < 20), and accidental species (P% < 10) based on their prevalence (Kennedy, 1993). The ecological indices were calculated as mean intensity (MI), mean abundance (MA), and prevalence (P%) (Bush et al., 1997). The infracommunity was characterized by the following indicators: total number of species, mean number of species, total number of species, mean number of species, total number of specimens, mean number of specimens, Brillouin's diversity index, Pielou's evenness index, and Simpson's dominance index (Magurran, 1988).

Results

Parasitological research: In 2019-2021, 132, 14, and 6 roach specimens were examined from Kudelin, Novo Selo, and Koshava, respectively. An infection with a total of nine parasite species was found – *Allocreadium isoporum* (Looss, 1894) Looss, 1902; *Asymphylodora tincae* (Modeer, 1790) Lühe, 1909;

Table 1. Ecological indices of <i>Rutilus rutilus</i> parasites from the Danube River, biotope Kudelin (N – number of investigated f	ish; n – number of
$infected \ fish; p-number \ of \ fish \ parasites; \ MI-mean \ intensity; \ MA-mean \ abundance; \ P\%-prevalence).$	

Rutilus rutilus (N = 132)	n	р	MI	MA	P%	Range
Parasite species						
Allocreadium isoporum (Looss, 1894) Looss, 1902	2	4	2.00	0.03	1.52	1-3
Asymphylodora tincae (Modeer, 1790) Lühe, 1909	3	4	1.33	0.03	2.27	1-2
Palaeorchis incognitus Szidat, 1943	1	1	1.00	0.01	0.76	1
Caryophyllaeides fennica (Schneider, 1902) Nybelin, 1922	1	1	1.00	0.01	0.76	1
Proteocephalus torulosus (Batsch, 1786) Nufer, 1905	2	5	2.50	0.04	1.52	1-4
Acanthocephalus anguillae (Müller, 1780) Lühe, 1911	1	1	1.00	0.01	0.76	1
Pomphorhynchus laevis (Zoega in Müller, 1776) Porta, 1908	3	11	3.67	0.08	2.27	1-8
Philometra ovata (Zeder, 1803)	4	5	1.25	0.04	3.03	1-2
Rhabdochona denudata (Dujardin, 1845) Railliet, 1916	1	1	1.00	0.01	0.76	1

Table 2. Infracommunity of Rutilus rutilus from the Danube River, biotope Kudelin.

	Number of parasite species			
Number of Rutilus rutilus specimens	0	1	2	
	117	12	3	
Total number of species (Mean number of species ± SD)	$9(0.14 \pm 0.41)$			
Total number of specimens (Mean number of specimens ± SD)	$33 \ (0.25 \pm 0.98)$			
Range	1–9			
Brillouin's diversity index (HB)	0.95 ± 0.24			
Pielou's evenness index (E)	0.79 ± 0.13			
Simpson's dominance index (C)	0.36 ± 0.14			

Palaeorchis incognitus Szidat, 1943: Caryophyllaeides fennica (Schneider, 1902) Nybelin, 1922; Proteocephalus torulosus (Batsch, 1786) Nufer, 1905; Acanthocephalus anguillae (Müller, 1780) Lühe, 1911; Pomphorhynchus laevis (Zoega in Müller, 1776) Porta, 1908; Philometra ovata (Zeder, 1803); Rhabdochona denudata (Dujardin, 1845) Railliet, 1916. The most parasite species (9 species) were found in the roach from Kudelin. One parasite species (C. fennica) was found in a roach from Koshava. Two parasite species (As. tincae and P. incognitus) were found in the roach from Novo Selo.

The component community and infracommunity of *R. rutilus* from the Kudelin biotope were considered, as the largest sample was collected there. Data on the species diversity and ecological indices of parasites in *R. rutilus* from the Koshava and Novo Selo biotopes were presented.

Component community of *R. rutilus* from the Danube River, Kudelin biotope: In the component community of roaches from the Danube River, Kudelin biotope, the largest number of specimens was represented by acanthocephalans (2 species with 12

specimens), followed by trematodes (3 species with nine specimens). An equal number of species and specimens (two species, each with six specimens) were found to have cestodes and nematodes. All found parasites were accidental species in the roach's component community. The highest mean intensity and mean abundance were observed in *P. laevis*, and the highest prevalence was found in *Ph. ovata* (Table 1).

Infracommunity of R. rutilus from the Danube River, Kudelin biotope: Of the collected and examined 132 specimens of roach from the Kudelin biotope, 117 specimens (88.64%) were not infected, and 15 specimens (11.36%) were infected. Twelve R. rutilus specimens were infected with one parasite species, and three R. rutilus specimens were infected with two parasite species. In the infracommunity of roaches from the Danube River (Kudelin), the number of parasites found varied from 1 to 9 in one R. rutilus specimen. Thirty-three parasite specimens were examined (Table 2).

Parasites of R. rutilus from the Danube River, Novo Selo, and Koshava biotopes: Fourteen specimens of roach from the Novo Selo biotope were examined, and

Table 3. Endoparasites of *Rutilus rutilus* from the Danube River and Danube River basin.

Authors	Localities	Species composition of the endoparasites of Rutilus rutilus			
	River Danube ir	other countries			
Stroe et al. (2021)	Romania	Ligula intestinalis (Linnaeus, 1758) Gmelin, 1790			
Stroe et al. (2022)	Romania	L. intestinalis			
	River Danub	e in Bulgaria			
Kakacheva-Avramova et al.	Silistra, Vidin	Bucephalus polymorphus von Baer, 1827			
(1978)	Ruse, Lom, Svishtov, Silistra	Pr. torulosus			
Atanasov (2012)	Archar	B. polymorphus			
Ataliasov (2012)	Gomotartsi	Ph. ovata			
Kirin et al. (2013)	River Danube and Lake Srebarna	Eustrongylides excisus Jägerskiöld, 1909 (larvae)			
	Danube River Basi	n in other countries			
1 1/ 11/ /1/1002)	Korycany water reservoir, Czech Republic	C. fennica			
Lucký and Král (1983)	Ludkovice water reservoir, Czech Republic	Nematoda sp.			
Hanzelová et al. (2009)	Latorica River, Slovakia	P. incognitus; C. fennica			
Oros and Hanzelová (2009)	Tisa River, Slovakia	C. fennica			
Djikanovic et al. (2011) Danube River basin in Serbia		All. isoporum; As. tincae; Sphaerostoma bramae (Müller, 1776 Lühe, 1909; C. fennica; Caryophyllaeus brachycollis Janiszewska 1953; Pr. torulosus; Pseudocapillaria tomentosa (Dujardin, 1845) Moravec, 1987 Raphidascaris sp.; Ph. ovata; Philometra rischta Skrjabin, 1917 Rh. denudata			
Docan et al. (2021)	Prut River, Romania	Caryophyllaeus fimbriceps Annenkova-Chlopina, 1919; L. intestinalis			
	Danube River B	asin in Bulgaria			
Shukerova (2010)	Srebarna Lake	Pr. torulosus; Contracaecum microcephalum (Rudolphi, 1809) (larvae); Ac. anguillae			
Shukerova and Kirin (2019)	Srebarna Lake	Pr. torulosus; C. microcephalum (larvae); Ac. anguillae			

only three fish hosts were infected. Two trematode species, viz. *As. tincae* and *P. incognitus*, were identified with two specimens each. Six *R. rutilus* specimens from the Koshava biotope were examined, and only one roach specimen was infected with one specimen of *C. fennica*.

Discussions

Several authors have investigated the parasite fauna of R. rutilus from the Danube River and its surrounding river basin (Table 3). In the present study, the ecological indices indicated by Hanzelová et al. (2009) and Oros and Hanzelová (2009) of C. fennica in roach from the Tisza River (MI = 3, P% = 23.9) and Latorica River (MI = 1.8, P% = 21.7), compared to those of the Danube River, Kudelin biotope (MI = 1.00, P% = 0.76) and Koshava biotope (MI = 1.00, P% = 16.67), are lower. Values for MI and P% for P. for P. for P. for for

4.3) were compared with those of the Danube River, Kudelin biotope (MI = 1.00, P%=0.76), and Novo Selo biotope (MI = 1.00, P% = 14.29), and the MI in the present study for the Danube River (Kudelin and Novo Selo biotopes) is much lower, and P% from the Kudelin biotope is much higher (Hanzelová et al., 2009; Oros and Hanzelová, 2009). In contrast, the Novo selo biotope is lower than indicated for the roach trematode from the Latorica River. The values for MA and P% of *Ph. ovata* (MA = 0.09, P% = 2.13) in R. rutilus from the Danube River, Gomotartsi (Atanasov, 2012), compared with those of the present study from Kudelin biotope (MA = 0.04, P% = 3.03), revealed that the established value from Kudelin biotope for MA was lower, while the value for P% was higher.

The endoparasite species found in the present study have not been reported for the Danube River in other countries' territories. Of the endoparasites found in the

Studies Parasite species	Present study	River Danube in other countries	Danube River Basin in other countries	River Danube in Bulgaria	Danube River Basin in Bulgaria
Allocreadium isoporum	•	-	•	-	-
Asymphylodora tincae	•	-	•	-	-
Palaeorchis incognitus	•	-	•	-	-
Caryophyllaeides fennica	•	-	•	-	-
Proteocephalus torulosus	•	-	•	•	•
Acanthocephalus anguillae	•	-	-	-	•
Pomphorhynchus laevis	•	-	-	-	-
Philometra ovata	•	-	•	•	-
Rhabdochona denudata	•	-	•	-	-

Table 4. Distribution of the endoparasites of *Rutilus rutilus* (" • " – presence of the parasite species; "-" – absence of the parasite species).

present study: 1) seven endoparasite species have been reported for the species from the river basin in other countries; 2) two endoparasite species have been reported for roach from the Bulgarian section of the river; 3) two endoparasite species have been reported for *R. rutilus* from the Danube River basin in Bulgaria (Tables 3-4).

One of the nine species of endohelminths found in the present study, the acanthocephalan P. laevis, is pathogenic for fish. Acanthocephalans cause pomphorhynchosis, a disease that leads to delayed growth, impaired movement, and intestinal damage in fish and other organisms (Novakov et al., 2015). In the present study, it was found that P. laevis in roaches from the Kudelin biotope had the highest mean intensity (MI = 3.67) and mean abundance (MA = 0.08) among the eight endohelminth species found in this biotope. The ecological indices of the acanthocephalan P. laevis are recommended for monitoring as a fish pathogenic species. Rutilus rutilus is a new host record for All. isoporum, As. tincae, P. incognitus, C. fennica, P. laevis, and Rh. denudata in Bulgaria. Kudelin, Koshava, and Novo selo biotopes are new habitats for the endoparasites found in roaches. New data on the component communities and infracommunities of the roach from the Danube River were presented.

Acknowledgment

The research was conducted in connection with the development of a PhD Thesis at the Agricultural University-Plovdiv. We are grateful to the university's leadership and the Centre for Research, Technology

Transfer, and Protection of Intellectual Property Rights for providing the opportunity to conduct this research and for their financial support.

References

Atanasov G. (2012). Fauna, morphology and biology on the endohelminths of fish from Bulgarian part of the Danube River. PhD thesis, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia.

BDS EN 14757 (2015). Water quality - Sampling of fish with multi-mesh gillnets. Retrieved from: https://repository.oceanbestpractices.org/handle/11329/2527? show=full.

Bush A., Lafferty K., Lotz J., Shostak A. (1997). Parasitology meets ecology on its own terms. Journal of Parasitology, 83: 575-583.

Djikanovic V., Paunovic M., Nikolic V., Simonovic P., Cakic P. (2011). Parasitofauna of freshwater fishes in the Serbian open waters: a checklist of parasites of freshwater fishes in Serbian open waters. Reviews in Fish Biology and Fisheries, 22(1): 297-324.

Docan A., Stroe M.D., Grecu I., Dediu L., Creţu M., Tenciu M. (2021). Diversity and distribution of parasites in some freshwater fish from the Romanian sector of the Prut River. Scientific Papers. Series D. Animal Science, LXIV(2): 442-447.

Dubinina M.N. (1948). Parasite fauna of the wild gray goose (*Anser anser*). Parasitological collection of the Zoological Institute of the Academy of Sciences of the USSR, 12: 300-351. (in Russian)

Freyhof J., Brooks E. (2011). European red list of freshwater fishes. Publications Office of the European Communities. Luxembourg. 60 p.

Froese R., Pauly D. (2024). FishBase. Available:

- www.fishbase.org. Retrieved 10/2024.
- Hamood A.M. (2021). Parasites: Introduction,
 Classification, Lifecycle and Relationship with their
 Hosts. International Journal for Research in Applied
 Sciences and Biotechnology, 8(2): 141-146.
- Hanzelová V., Oros M., Scholz T. (2009). Pollution and diversity of fish parasites: Impact of pollution on the diversity of fish parasites in the Tisa River in Slovakia.
 In: G.H. Tepper (Ed.) Species Diversity and Extinction, Nova Science Publishers, Inc., New York. pp: 265-296.
- Juhásová Ľ., Radačovská A., Bazsalovicsová E., Miklisová D., Bindzárová-Gereľová M. Králová-Hromadová I. (2019). A study of the endohelminths of the European perch *Perca fluviatilis* L. from the central region of the Danube river basin in Slovakia. ZooKeys, 899: 47-58.
- Kakacheva-Avramova D., Margaritov N., Grupcheva G. (1978). Fish parasites of Bulgarian part of the Danube River. Limnology of Bulgarian part of the Danube River, Bulgarian Academy of Sciences, 250-271. (in Bulgarian)
- Karapetkova M., Zhivkov M. (2006). Fishes in Bulgaria. GeaLibris. Sofia. 216 p. (in Bulgarian)
- Kennedy C. (1993). The dynamics of intestinal helminth communities in eels *Anguilla anguilla* in a small stream: long-term changes in richness and structure. Parasitology, 107(1): 71-78.
- Kirin D., Hanzelova Vl., Shukerova S., Hristov St., Turcekov L., Spakulova M. (2013). Helminth communities of fishes from the River Danube and Lake Srebarna, Bulgaria. Scientific Papers, Series D. Animal Science, LVI: 333-340.
- Kotsev Ts., Zhelezov G. (2014). Potential sources of chemical pollution of Danube floodplain sector between Vidin-Calafat and Nikopol-Turnu Magurele. Problems of Geography, 1-2: 113-126. (in Bulgarian)
- Lucký Z., Král K. (1983). Survey of the health status of fish in water reservoirs of the Morava river basin. Acta Veterinaria Brno, 52(1-2): 83-93.
- Magurran A. (1988). Ecological diversity and its measurement. Princeton University Press, Princeton.
- Moravec F. (2013). Parasitic nematodes of freshwater fishes of Europe. Academia, Praha.
- Novakov N., Radosavljević V., Cirković M. (2015). Diseases of freshwater fish. Faculty of Agriculture, Novi Sad: Feljton. 167 p. (in Serbian)
- Oros M., Hanzelová V. (2009). Re-establishment of the fish parasite fauna in the Tisa River system (Slovakia) after a catastrophic pollution event. Parasitology

- Research, 104(6): 1497-1506.
- Scholz T., Hanzelová V. (1998). Tapeworms of genus *Proteocephalus* Weinland, 1858 (Cestoda; Proteocephalidae), parasites of fish in Europe. Publishing house of the Academy of Sciences of the Czech Republic, Praha. 117 p.
- Shukerova S. (2010). Helminths and helminth communities of fishes from Biosphere Reserve Srebarna. PhD Thesis, Agricultural University-Plovdiv, Plovdiv. (in Bulgarian)
- Shukerova S.A., Kirin D.A. (2019). Helminth communities of roach *Rutilus rutilus* (L., 1758) (Cypriniformes: Cyprinidae) from Srebarna Biosphere Reserve, Bulgaria. Acta Zoologica Bulgarica, 71(2): 285-292.
- Stroe M.D., Creţu M., Docan A., Tenciu M., Patriche N. (2021). Investigation on parasitofauna of some freshwater fish from superior and midle area of Romanian Danube river sector. Scientific Papers. Series D. Animal Science, LXIV(1): 577-582.
- Stroe M.D., Guriencu R.C., Athanosoupolos L., Ion G., Coman E., Mocanu E.E. (2022). Health profile of some freshwater fishes collected from Danube River sector (km 169-197) in relation to water quality indicators. Scientific Papers: Series D, Animal Science-The International Session of Scientific Communications of the Faculty of Animal Science, 65(1): 654-663.
- Zarev V.Y., Apostolou A.I., Velkov B.K., Vassilev M.V. (2013). Review of the distribution of the family Gobiidae (Pisces) in the Bulgarian Danube tributaries. Ecologia Balkanica, 5(2): 81-89.
- Zhelyazkov G.I., Georgiev D.M., Peeva S.P., Kalcheva S.E., Georgieva K.Y. (2018). Chemical Composition and Levels of Heavy Metals in Fish Meat of the Cyprinidae Family from Zhrebchevo Dam, Central Bulgaria. Ecologia Balkanica, 10(2): 133-140.