The Life Story of TGFβs superfamily: from the beginning to the end

Shaghayegh Hasanpour, Soheil Eagderi, Hadi poorbagher

Abstract

TGFβ-superfamily consists a plethora of extracellular growth factors, modulating developmental procedures and homeostasis in vertebrates and invertebrates. TGFβ-superfamily ligands, synthesized as the large inactive precursors, transform into active ligands following by their interaction with extracellular proteolytic enzymes. Principally, TGFβs ligation to their responsive receptors can trigger two distinct transduction cascades, including 1- SMAD dependent or canonical pathway and 2- SMAD independent or non-canonical ones. R-SMADs are substrates for the type I receptors, as their GS domains act as a docking site for R-SMADs. In the canocical pathway, upon phosphorylation of SSXS of MH2, two phosphorylated-SMADs (P-SMADs) in accordance with receptor tetra-dimerization, homo or heterodimerize and then form a trimer complex by SMAD4. The trimers translocate to the nucleus, where in association with other transcription factors (activators and repressors) modulate their target genes expression. The purpose of this review is to provide a comprehensive information about these cascades and their downstream effectors with an emphasis on the canonical one.

Keywords

TGFβ, SMAD, Canonical pathway, Non-canonical cascades.

Full Text:

PDF

References

Bartscherer K., Boutros M. (2008). Regulation of Wnt protein secretion and its role in gradient formation. EMBO Reports, 9: 977-982.

Bennett J.T., Joubin K., Cheng S., Aanstadd P., Herwig R., Clark M., Lehrach H., Schieraf A.F. (2007). Nodal signaling activates differentiation genes during zebrafish gastrulation. Developmental Biology, 304: 525-540.

Beyer T.A., Narimatsu M., Weiss A., David L., Wrana J.L. (2013). The TGFβ superfamily in stem cell biology and early mammalian embryonic development. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830: 2268-2279.

Carmany-Rampey A., Moens C.B. (2006). Modern mosaic analysis in the zebrafish. Methods, 39: 228-238.

Cavaleri F., Schöler H. (2009). Molecular bases of pluripotency. In: Essentials of Stem Cell Biology. Elsevier. pp: 37-60.

Chan T-M., Longabaugh W., Bolouri H., Chen H-L., Tseng W-F., Chao C-H., Jang T-H., Lin Y-I, Hung S-C., Wang H-G., Yuh D-H. (2009). Developmental gene regulatory networks in the zebrafish embryo. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1789: 279-298.

Chen Y., Schier A.F. (2001). The zebrafish Nodal signal Squint functions as a morphogen. Nature, 411: 607.

Chng Z., Vallier L., Pedersen R. (2011). Activin/nodal signaling and pluripotency. Vitamins and Hormones, 85: 39-58.

De Robertis E.M. (2009). Spemann’s organizer and the self-regulation of embryonic fields. Mechanisms of Development, 126: 925-941.

Donahue T.R., Dawson D.W. (2011). Nodal/Activin signaling: a novel target for pancreatic cancer stem cell therapy. Cell Stem Cell, 9: 383-384.

Fathi A., Eisa-Beygi S., Baharvand H. (2017). Signaling molecules governing pluripotency and early lineage commitments in human pluripotent stem cells. Cell Journal (Yakhteh), 19: 194.

Field H.A., Dong P.S., Beis D., Stainier D.Y. (2003a). Formation of the digestive system in zebrafish. ii. pancreas morphogenesis. Developmental Biology, 261:197-208.

Field H.A., Ober E.A., Roeser T., Stainier D.Y. (2003b). Formation of the digestive system in zebrafish. I. Liver morphogenesis. Developmental Biology, 253: 279-290.

Gordon K.J., Blobe G.C. (2008). Role of transforming growth factor-β superfamily signaling pathways in human disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1782: 197-228.

Harvey S.A., Smith J.C. (2009). Visualisation and quantification of morphogen gradient formation in the zebrafish. PLoS Biology, 7: e1000101.

Itoh F., Watabe T., Miyazono K. (2014). Roles of TGF-beta family signals in the fate determination of pluripotent stem cells. Seminars in Cell and Developmental Biology, 32: 98-106.

Itoh S., ten Dijke P. (2007). Negative regulation of TGF-β receptor/Smad signal transduction. Current Opinion in Cell Biology, 19: 176-184.

James D., Levine AJ., Besser D., Hemmati-Brivanlou A. (2005). TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132: 1273-1282.

Jia S., Ren Z., Li X., Zheng Y., Meng A. (2008). smad2 and smad3 are required for mesendoderm induction by transforming growth factor-β/nodal signals in zebrafish. Journal of Biological Chemistry, 283: 2418-2426.

Jing X-H., Zhou S-M., Wang W-Q., Chen Y. (2006). Mechanisms underlying long-and short-range nodal signaling in Zebrafish. Mechanisms of Development, 123: 388-394.

Kodjabachian L., Dawid I.B., Toyama R. (1999). Gastrulation in zebrafish: what mutants teach us. Developmental Biology, 213: 231-245.

Kondo M. (2007). Bone morphogenetic proteins in the early development of zebrafish. The FEBS Journal, 274: 2960-2967.

Kramer I.M. (2002). Signal Transduction. Academic Press. 366 p.

Lele Z., Nowak M., Hammerschmidt M. (2001). Zebrafish admp is required to restrict the size of the organizer and to promote posterior and ventral development. Developmental Dynamics, 222: 681-687.

Liang J.O., Rubinstein A.L. (2003). Patterning of the zebrafish embryo by nodal signals. Current Topics in Developmental Biology, 55: 143-171.

Lonardo E., Hermann P.C., Mueller M-T., Huber S., Balic A., Miranda-Lorenzo I., Zagorac S., Alcala S., Rodriguez-Arabaolaza I., Ramirez J.C., Torres-Ruíz R., Garcia E., Hidalgo M., Cebrián D.A., Heuchel R., Löhr M., Berger F., Bartenstein P., Aicher A., Heeschen C. (2011). Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell stem Cell, 9: 433-446.

Minchiotti G., Parisi S., Liguori G.L., D'Andrea D., Persico M.G. (2002). Role of the EGF-CFC gene cripto in cell differentiation and embryo development. Gene, 287: 33-37.

Mizoguchi T., Izawa T., Kuroiwa A., Kikuchi Y. (2006). Fgf signaling negatively regulates Nodal-dependent endoderm induction in zebrafish. Developmental Biology, 300: 612-622.

Mullins M.C. (1998). Embryonic axis formation in the zebrafish. In: H.W. Detrich III, M. Westerfield, L.I. Zon (Eds.), Methods in Cell Biology, vol 59. Elsevier. pp: 159-178.

Munoz-Sanjuan I., A HB. (2001). Early posterior/ventral fate specification in the vertebrate embryo. Developmental Biology, 237: 1-17.

Neave B., Holder N., Patient R. (1997). A graded response to BMP-4 spatially coordinates patterning of the mesoderm and ectoderm in the zebrafish. Mechanisms of Development, 62: 183-195.

Nozawa Y.I., Lin C., Chuang P-T. (2013). Hedgehog signaling from the primary cilium to the nucleus: an emerging picture of ciliary localization, trafficking and transduction. Current Opinion in Genetics and Development, 23: 429-437.

Ober EA., Field HA., Stainier DY. (2003). From endoderm formation to liver and pancreas development in zebrafish. Mechanisms of Development, 120: 5-18.

Oshimori N., Fuchs E. (2012). The harmonies played by TGF-beta in stem cell biology. Cell Stem Cell, 11: 751-764.

Pan D. (2010). The hippo signaling pathway in development and cancer. Developmental Cell, 19: 491-505.

Pauklin S., Vallier L. (2015). Activin/Nodal signalling in stem cells. Development, 142: 607-619.

Perrett R.M. (2008). The human germ cell lineage: pluripotency, tumourigenesis and proliferation. University of Southampton. PhD. Thesis. 256 p.

Quail D.F., Siegers G.M., Jewer M., Postovit L-M. (2013). Nodal signalling in embryogenesis and tumourigenesis. The international Journal of Biochemistry & Cell Biology, 45: 885-898.

Raftery L.A., Sutherland DJ.. (1999). TGF-β family signal transduction in Drosophila development: from Mad to Smads. Developmental Biology, 210: 251-268.

Ramel M-C., Hill C.S. (2013). The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands. Developmental Biology, 378: 170-182.

Reddi A.H. (1997). Bone morphogenetic proteins: an unconventional approach to isolation of first mammalian morphogens. Cytokine and Growth Factor Reviews, 8:11-20.

Schier A.F. (2001). Axis formation and patterning in zebrafish. Current Opinion in Genetics & Development, 11: 393-404.

Schier AF. (2009). Nodal morphogens. Cold Spring Harbor Perspectives in Biology, 1: a003459.

Seuntjens E., Umans L., Zwijsen A., Sampaolesi M., Verfaillie CM., Huylebroeck D. (2009). Transforming growth factor type β and Smad family signaling in stem cell function. Cytokine and Growth Factor Reviews, 20: 449-458.

Shen M.M., Schier A.F. (2000). The EGF-CFC gene family in vertebrate development. Trends in Genetics, 16: 303-309.

Stemple D.L. (2001). Vertebrate development: the subtle art of germ-layer specification. Current Biology, 11: R878-R881.

Stewart S., Gomez A.W., Armstrong B.E., Henner A., Stankunas K. (2014). Sequential and opposing activities of Wnt and BMP coordinate zebrafish bone regeneration. Cell Reports, 6: 482-498.

Sun L.T., Yamaguchi S., Hirano K., Ichisaka T., Kuroda T., Tada T. (2014). Nanog co-regulated by Nodal/Smad2 and Oct4 is required for pluripotency in developing mouse epiblast. Developmental Biology, 392: 182-192.

Sun Z., Jin P., Tian T., Gu Y., Chen Y-G., Meng A. (2006). Activation and roles of ALK4/ALK7-mediated maternal TGFβ signals in zebrafish embryo. Biochemical and Biophysical Research communications, 345: 694-703.

Tam P.P., Kanai-Azuma M., Kanai Y. (2003). Early endoderm development in vertebrates: lineage differentiation and morphogenetic function. Current Opinion in Genetics and Development, 13: 393-400.

Ten Dijke P., Hill C.S. (2004). New insights into TGF-β–Smad signalling. Trends in Biochemical Sciences, 29: 265-273.

Tuazon F.B., Mullins M.C. (2015). Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Seminars in Cell and Developmental Biology, 42: 118-133.

Vallier L. (2016). {TGF}-$upbeta$ Superfamily Signaling}. In: R. Bradshaw, P. Stahl (Eds.), Encyclopedia of Cell Biology. Elsevier. pp: 37-50.

Whitman M. (2001). Nodal signaling in early vertebrate embryos: themes and variations. Developmental Cell, 1: 605-617.

Wu M.Y., Hill C.S. (2009). TGF-β superfamily signaling in embryonic development and homeostasis. Developmental Cell, 16: 329-343.

Xu R-H., Sampsell-Barron T.L., Gu F., Root S., Peck R.M., Pan G., Yu J., Antosiewicz-Bourget J., Tian S., Stewart R., Thomson J.A. (2008). NANOG is a direct target of TGFβ/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell, 3: 196-206.

Zhendong L. (2009). Nanog in the twin fish models medaka and zebrafish: Functional divergence or pleiotropy of vertebrate pluripotency gene. 265 p.

Refbacks

  • There are currently no refbacks.