Prey identification of invasive peacock bass from Telabak Lake Malaysia using DNA barcoding technique

Aliyu Garba Khaleel, Najlaa Nawwarah Rusli, Nurul Izzati Mohd Radzif, Aiman Syafiq Muhd Nasir, Mohamad Zulkarnain Mohd Dali, Norshida Ismail, Hou Chew Ha, Ahmad Syazni Kamarudin


Invasive peacock bass Cichla spp. have recently invaded freshwater habitats across Malaysia. Stomach contents of 135 peacock bass captured from the Telabak Lake of East Coast of Peninsular Malaysia were analysed. The preys were examined using visual identification method and mitochondrial DNA barcoding technique to identify the partial digested and decaying preys in the stomach. The current study identified 7 prey species (6 fishes 43.0% and 1 shrimp 5.1%) belongs to 5 families in fishes’ stomach. The results revealed that peacock bass is highly predator and generalist feeder with an opportunistic feeding behaviour. It is highly important to reduce and monitor the abundance of this species for future survival of native species in the lake.


Conservation, Feeding habit, Invasive species.

Full Text:



Agostinho A.A., Thomaz S.M., Gomes L.C. (2005). Conservation of the biodiversity of Brazil’s inland waters. Conservation Biology, 19: 646-652.

Ahmad-Syazni K., Khaleel A.G., Norshida I., Connie F.K., Nguang S.I., Ha H.C. (2017). Population structure of swamp eel Monopterus albus in East Coast of Peninsular Malaysia inferred from 16S mitochondrial DNA. World Applied Sciences Journal, 35: 1392-1399.

Ashelby C.W., De Grave S., Johnson M.L. (2016). Diet analysis indicates seasonal fluctuation in trophic overlap and separation between a native and an introduced shrimp species (Decapoda, Palaemonidae) in the tidal river Thames (UK). Crustaceana, 89: 701-719.

Aznan A.S., Iberahim N.A., Rahman N.I., Zakaria K., Leong L.K., Ibrahim W.N.W. (2017). Health surveillance of freshwater prawn, Macrobrachium lanchesteri in Setiu wetland, Terengganu, Malaysia. Journal of Sustainability Science and Management, 12: 167-175.

Barbato M., Kovacs T., Coleman M.A., Broadhurst M.K., de Bruyn M. (2019). Metabarcoding for stomach-content analyses of Pygmy devil ray (Mobula kuhlii cf. eregoodootenkee): Comparing tissue and ethanol preservative-derived DNA. Ecology and Evolution, 9: 2678-2687.

Carvalho D.C., Oliveira D.A.A., Sampaio I., Beheregaray L.B. (2014). Analysis of propagule pressure and genetic diversity in the invisibility of a freshwater apex predator: the peacock bass (genus Cichla). Neotropical Ichthyology, 12: 105-116.

Clavero M., Garcia-Berthou E. (2005). Invasive species are a leading cause of animal extinctions. Trends in Ecology and Evolution, 20: 110-110.

Côté I., Green S., Morris J., Akins J., Steinke D. (2013). Diet richness of invasive Indo-Pacific lionfish revealed by DNA barcoding. Marine Ecology Progress Series, 472: 249-256.

Cucherousset J., Olden J.D. (2011). Ecological impacts of non-native freshwater fishes. Fisheries, 36: 215-231.

Dahl K.A., Patterson III W.F., Robertson A., Ortmann A.C. (2017). DNA barcoding significantly improves resolution of invasive lionfish diet in the Northern Gulf of Mexico. Biological Invasions, 19: 1917-1933.

Derbal F., Nouacer S., Kara M.H. (2007). [Composition and variations of dietary regime of sparaillon Diplodus annularis (Sparidae) in Annaba Golf (East of Algeria)]. Cybium, 31: 443-450. (In French)

Desa S., Aidi D. (2013). A proposed model of fish distribution in shallow lake based on feeding behaviour of fishes in Raban Lake. Conference: UMTAS 2013: The 12th International UMT Annual Symposium, At Terengganu, Malaysia.

Dunn M.R., Szabo A. McVeagh M.S., Smith P.J. (2010). The diet of deep-water sharks and the benefits of using DNA identification of prey. Deep Sea Research Part I: Oceanographic Research Papers, 57: 923-930.

Eagderi S., Nasri M., Çiçek E. (2018). First record of the Amur goby Rhinogobius lindbergi Berg 1933 (Gobiidae) from the Tigris River drainage, Iran. International Journal of Aquatic Biology, 6(4): 202-207.

Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase sub-unit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3: 294-299.

Franco A.C.S., dos Santos L.N., Petry A.C., García-Berthou E. (2017). Abundance of invasive peacock bass increases with water residence time of reservoirs in South-eastern Brazil. Hydrobiologia, 817: 155-166.

Fugi R., Luz-Agostinho K.D.G., Agostinho A.A. (2008). Trophic interaction between an introduced peacock bass and a native dogfish piscivorous fish in a Neotropical impounded river. Hydrobiologia, 607: 143-150.

Garvey J.E., Chipps S.R. (2012). Diets and energy flow. In: A.V. Zale, D.L. Parrish, T.M. Sutton (Eds.). Fisheries techniques, 3rd edition. American Fisheries Society, Bethesda, Maryland. 7 pp: 33-779.

Golani D., Sonin O., Snovsky G., David L., Tadmor-Levi R. (2019). The occurrence of the peacock bass (Cichla kelberi Kullander and Ferreira 2006) in Lake Kinneret (Sea of Galilee), Israel. BioInvasions Records, 8: 706-711.

Gomiero L., Villares J.G., Naous F. (2009). Reproduction of Cichla kelberi Kullander and Ferreira, 2006 introduced into an artificial lake in South-eastern Brazil. Brazilian Journal of Biology, 69: 175-183.

Ha H.C., Nguang S.I., Zarizal S., Komilus C.F., Norshida I., Ahmad-Syazni K. (2017): Genetic diversity of kampung chicken (Gallus gallus domesticus) from selected areas in East Coast Peninsular Malaysia inferred from partial control region of mitochondrial DNA. Malaysian Journal of Applied Biology, 46: 63-70.

Hamid M.A., Mansor M. (2013). The inland fisheries with special reference to Temengor and Bersia Reservoirs, Perak. Malaysian Journal of Applied Biology, 42: 73-76.

Hynes H.B.N. (1950). The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. The Journal of Animal Ecology, 19: 36.

Junior G.A., Gomiero L.M. (2010). Feeding dynamics of Cichla kelberi Kullander & Ferreira, 2006 introduced into an artificial lake in South-eastern Brazil. Neotropical Ichthyology, 8: 819-824.

Karimi S., Katiraei E., Soofiani N.M., Taghavimotlagh S.A., Vazirizadeh, A. (2019). Feeding habits of striped piggy, Pomadasys stridens (Forsskal, 1775) (Haemulidae) in northern part of the Persian Gulf. International Journal of Aquatic Biology, 7: 85-92.

Khaleel A.G., Ha H.C., Ahmad-Syazni K. (2019). Different population of Malaysia swamp eel in East and Southeast Asia inferred from partial 16s mitochondrial DNA. Bioscience Research, 16: 01-09.

Khaleel A.G., Nasir S.A.M, Norshida I., Ahmad-Syazni K. (2020). Origin of invasive fish species, peacock bass Cichla species in Lake Telabak Malaysia revealed by mitochondrial DNA barcoding. Egyptian Journal of Aquatic Biology and Fisheries, 24: 311-322.

Kovalenko K.E., Dibble E.D., Agostinho A.A., Cantanhêde G., Fugi R. (2009). Direct and indirect effects of an introduced piscivore, Cichla kelberi and their modification by aquatic plants. Hydrobiologia, 638: 245-253.

Kovalenko K.E., Dibble E.D., Agostinho A.A., Pelicice F.M. (2010). Recognition of non-native peacock bass, Cichla kelberi by native prey: testing the naivete´ hypothesis. Biological Invasions, 12: 3071-3080.

Kumar S., Stecher G., Tamura K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33: 1870-1874.

Layman C., Allgeier J. (2012). Characterizing trophic ecology of generalist consumers: a case study of the invasive lionfish in The Bahamas. Marine Ecology Progress Series, 448: 131–141.

Leray M., Boehm J.T., Mills S.C., Meyer C.P. (2011). Moorea BIOCODE barcode library as a tool for understanding predator–prey interactions: insights into the diet of common predatory coral reef fishes. Coral Reefs, 31: 383-388.

Li Q., Deng J., Chen C., Zeng L., Lin X., Cheng Z., Huang X. (2019). DNA barcoding subtropical aphids and implications for population differentiation. Insects, 11: 11.

Librado P., Rozas J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25: 1451-1452.

Marques A.C.P.B., Franco A.C.S., Salgueiro F., García-Berthou E., Santos L.N. (2016). Genetic divergence among invasive and native populations of the yellow peacock cichlid Cichla kelberi. Journal of Fish Biology, 89: 2595-2606.

Matsuzaki S.S., Sasaki T., Akasaka M. (2016). Invasion of exotic piscivorous causes losses of functional diversity and functionally unique species in Japanese lakes. Freshwater Biology, 61: 1128-1142.

Mendonça H.S., Santos A.C.A., Martins M.M., Araújo F.G. (2018). Size-related and seasonal changes in the diet of the non-native Cichla kelberi Kullander & Ferreira, 2006 in a lowland reservoir in the South-eastern Brazil. Biota Neotropica, 18: 1-8.

Menezes R.F., Attayde J.L., Lacerot G., Kosten S., Souza L.C., Costa L.S., Van Nes E.H., Jeppesen E. (2012). Lower biodiversity of native fish but only marginally altered plankton biomass in tropical lakes hosting introduced piscivorous Cichla cf. ocellaris. Biological Invasions, 14: 1353-1363.

Molina W.F., Gurgel H.C.B., Vieira L.J.S., Canan B. (1996). Acao de um predador exogeno sobre um ecossistema aquatico equilibrado, I Extincoes locais e medidas de conservacao genetica. UNIMAR, 18: 335-345.

Moran Z., Orth D.J., Schmitt J.D., Hallerman E.M., Aguilar R. (2015). Effectiveness of DNA barcoding for identifying piscine prey items in stomach contents of piscivorous catfishes. Environmental Biology of Fishes, 99: 161-167.

Morris J.A., Akins J.L. (2009). Feeding ecology of invasive lionfish (Pterois volitans) in the Bahamian archipelago. Environmental Biology of Fishes, 86: 389-398.

Mousavi-Sabet H., Eagderi S. (2016). First record of the convict cichlid, Amatitlania nigrofasciata (Günther, 1867) (Teleostei: Cichlidae) from the Namak Lake basin, Iran. Iranian Journal of Ichthyology, 3(1): 25-30.

Mzaki F., Manchih K., Idrissi H.F., Boumaaz A., Haddouch A.B., Tazi O. (2017). Diet of the common cuttlefish Sepia officinalis (Linnaeus, 1758) (Cephalopoda: Sepiidae) in the Southern Moroccan Atlantic waters, Cap Boujdour, Cap Blanc. AACL Bioflux, 10: 1692-1710.

Ng C.K.C., Ooi P.A., Wong W., Khoo G. (2018). Ichthyofauna checklist (Chordata: Actinopterygii) for indicating water quality in Kampar River catchment, Malaysia. Biodiversitas, 19: 2252-2274.

Pallaoro A., Santic M., Jardas I. (2006). Feeding habits of the common two-banded sea bream, Diplodus vulgaris (Sparidae), in the eastern Adriatic Sea. Cybium, 30: 19-25.

Pelicice F.M., Agostinho A.A. (2008). Fish fauna destruction after the introduction of a non-native predator (Cichla kelberi) in a Neotropical reservoir. Biological Invasions, 11: 1789-1801.

Pereira L.S., Agostinho A.A., Gomes L.C. (2015). Eating the competitor: a mechanism of invasion. Hydrobiologia, 746: 223-231.

Peyami F.Y. (2018). Food and feeding habit of a Teleostean fish Salmostoma bacaila (Ham.) at Partapur dam, Makhdumpur Jehanabad, Bihar. International Journal of Fisheries and Aquatic Studies, 6: 388-391.

Phone H., Ohtomi J., Suzuki H. (2005). Reproductive biology of the freshwater palaemonid prawn, Macrobrachium lanchesteri (De Man, 1911) from Myanmar. Crustaceana, 78: 201-213.

Pinto-Coelho R.M., Bezerra-Neto J.F., Miranda F., Mota T.G., Resck R., Santos A.M. (2008). The inverted trophic cascade in tropical plankton communities: Impacts of exotic fish in the Middle Rio Doce Lake district, Minas Gerais, Brazil. Brazil Journal of Biology, 68: 1025-1037.

Radkhah A., Eagderi S., Mousavi-Sabet H. (2016). First record of the exotic species Hemiculter leucisculus (Pisces: Cyprinidae) in southern Iran. Limnetica, 35: 175-178.

Rahim K.A.A., Esa Y., Arshad A. (2013). The influence of alien fish species on native fish community structure in Malaysian waters. Kuroshio Science, 7: 81-93.

Ratnasingham S., Hebert P. (2007). BOLD: the barcode of life data system. Molecular Ecology Notes, 7: 355-364.

Riemann L., Alfredsson H., Hansen M.M., Als T.D., Nielsen T.G., Munk P., Castonguay M. (2010). Qualitative assessment of the diet of European eel larvae in the Sargasso Sea resolved by DNA barcoding. Biology Letters, 6: 819-822.

Saat A., Isak N.M., Hamzah Z., Wood A.K. (2014). Study of radionuclides linkages between fish, water and sediment in former tin mining lake in Kampung Gajah, Perak, Malaysia. The Malaysian Journal of Analytical Sciences, 18: 170-177.

Sahtout F., Boualleg C., Kaouachi N., Khelifi N., Menasria A., Bensouilah M. (2018). Feeding habits of Cyprinus carpio in Foum El-Khanga Dam, Souk-Ahras, Algeria. AACL Bioflux, 11: 554-564.

Šantić M., PAlAdin A., Rađa B. (2011). Feeding habits of common pandora Pagellus erythrinus (Sparidae) from eastern central Adriatic Sea. Cybium, 35: 83-90.

Santos L.N., Gonzales A.F., Araujo, F.G. (2001). Dieta do tucunare´-amarelo Cichla monoculus (Bloch & Schneider) (Osteichthyes, Cichlidae), no reservato´rio de Lajes, Rio de Janeiro, Brasil. Revista Brasileira de Zoologia, 18: 191-204.

Shahabudin M.M., Musa S. (2018). An overview on water quality trending for lake water classification in Malaysia. International Journal of Engineering and Technology, 7: 5-10.

Sley A., Jarboui O., Ghorbel M., Bouain A. (2008). Diet composition and food habits of Caranx rhonchus (Carangidae) from the Gulf of Gabes (central Mediterranean). Journal of the Marine Biological Association of the UK, 88: 00-00.

Tan K.W., Sze K.Z. (2017). Determination of heavy metal concentration in fish species in Kampar mining lake, Perak state of Malaysia. Fresenius Environmental Bulletin, 26: 4202-4207.

Ward R.D., Zemlak T.S., Innes B.H., Last P.R., Hebert P.D. (2005). DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360: 1847-857.

Yap S.K., Muneera I., Syakir M.I., Zarul H.H., Widad F. (2016). Stable isotopes approach to infer the feeding habit and trophic position of freshwater fishes in tropical lakes. Iranica Journal of Energy and Environment, 7: 177-183.

Zaret T.M., Paine R.T. (1973). Species introduction in a tropical lake. Science, 182: 449–455.

Zhao T., Villéger S., Lek S., Cucherousset J. (2014). High intraspecific variability in the functional niche of a predator is associated with ontogenetic shift and individual specialization. Ecology and Evolution, 4: 4649-4657.


  • There are currently no refbacks.