Assessment of hematological and biochemical alterations as markers in an Indian major carp Catla catla exposed to various concentrations of zinc oxide nanoparticles
Downloads
Fingerlings of Catla catla were exposed to 1, 5, and 25 mg/L of zinc oxide nanoparticles (ZnO NPs) for 15 days, and specific hematological and biochemical parameters were evaluated to assess the toxicity. During the exposure period, red blood cell (RBC) count was found to decrease (except at the end of the 5th day in 1 mg/L) whereas white blood cell (WBC) count was found to increase in ZnO NPs treated fishes. A significantly higher hematocrit (Hct) level was recorded in fish exposed to 1 mg/L when compared with control and a higher concentration of ZnO NPs (5 and 25 mg/L). Erythrocyte indices such as mean cellular volume (MCV) and mean cellular hemoglobin (MCH) values (except at the end of 5 and 10th day at 1 and 10 mg/L exposed groups) were significantly increased. Mean cellular hemoglobin concentration (MCHC) level was found to be increased at 1 and 25 mg/L treated groups compared to 10 mg/L. Compared to the control group, plasma glucose level was increased significantly in fish exposed to 5 and 25 mg/L concentrations of ZnO NPs, while the plasma glucose level was decreased at the end of the 15th day in all the concentrations. Plasma protein level was increased at the end of the 5th day while the level of plasma protein was decreased on the 10 and 15th day. A significant increase in glutamate oxaloacetate transaminase (GOT) (except at the end of 10th day) and glutamate pyruvate transaminase (GPT) activity in gill and liver (except at the end of 10 and 15th day in gill) were noted in all the concentrations tested when compared to control groups. The results of the present study indicate that ZnO NPs at 1, 5, and 25 mg/L can alter the hematological and biochemical parameters of fish and the toxicity data may provide the ecotoxicological impact of ZnO NPs on the aquatic environment.
Downloads
Abdel-Halim K.Y., Osman S.R., Abdou G.Y. (2020). In vivo evaluation of oxidative stress and biochemical alteration as biomarkers in glass clover snail, Monacha cartusiana exposed to zinc oxide nanoparticles. Environmental Pollution, 257: 113120.
Agrahari S., Kashev C., Pandey K.C., Krishna Gopal K. (2007). Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pesticide Biochemistry and Physiology, 88(3): 268-272.
Aitken R., Chaudhry M., Boxall A., Hull M. (2006). Manufacture and use of nanomaterials: Current status in the UK and global trends. Occupational Medicine, 56(5): 300-306.
Ali Mansoori G., Bastami, T.R., Ahmadpour A., Eshaghi Z. (2008). Environmental application of nanotechnology. In Annual Review of Nano Research. Pp: 439-493
Ali M.E., Hashim U., Mustafa U., Che Man Y.B., Yusop M.H.M., Bari M.F., Islam K.N., Hasan M.F. (2011). Nanoparticle sensor for label free detection of swine DNA in mixed biological samples. Nanotechnology, 22(19): 195503.
Alkaladi A., Afifi M., Ali H., Saddick S. (2020). Hormonal and molecular alterations induced by sub-lethal toxicity of zinc oxide nanoparticles on Oreochromis niloticus. Saudi Journal of Biological Sciences, 27(5):1296-1301.
Alkaladi A., El-Deen N.A.N., Afifi M., Zinadah O.A.A. (2015). Hematological and biochemical investigations on the effect of vitamin E and C on Oreochromis niloticus exposed to zinc oxide nanoparticles. Saudi Journal of Biological Sciences, 22(5): 556-563.
Amutha C., Subramanian P. (2009). Tissues damaging effect of zinc oxide nanoparticle on Oreochromis mossambicus. Biochemical and Cellular Archives, 9(2): 235-239.
APHA (American Public Health Association). (2005). Standard methods for the examination of water and wastewater, twentieth ed. American Public Health Association, Washington, DC.
Asharani P.V., Wu Y.L., Gong Z., Valiyaveettil S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19(25): 255102.
Ates M., Daniels J., Arslan Z., Farah I.O. (2013). Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environmental Monitoring and Assessment, 185: 3339-3348.
Banaee M., Vaziriyan M., Derikvandy A., Haghi B.N., Mohiseni M. (2019a). Biochemical and physiological effect of dietary supplements of ZnO nanoparticles on common carp (Cyprinus carpio). International Journal of Aquatic Biology, 7(1): 56-64.
Banaee M., Akhlaghi M., Soltanian S., Gholamhosseini A., Heidarieh H., Fereidouni M.S. (2019b). Acute exposure to chlorpyrifos and Glyphosate induces changes in hemolymph biochemical parameters in the crayfish, Astacus leptodactylus (Eschscholtz, 1823). Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 222: 145-155.
Banaee M., Akhlaghi, M., Soltanian S., Sureda A., Gholamhosseini A., Rakhshaninejad M. (2020). Combined effects of exposure to sub-lethal concentration of the insecticide chlorpyrifos and the herbicide glyphosate on the biochemical changes in the freshwater crayfish Pontastacus leptodactylus. Ecotoxicology, 29: 1500-1515.
Banaee M., Mirvagefei A.R., Rafei G.R., Majazi Amiri B. (2008). Effect of sub-lethal diazinon concentrations on blood plasma biochemistry. International Journal of Environmental Research, 2(2): 189-198.
Banaee M., Soltanian S., Sureda A., Gholamhosseini A., Haghi B.N., Akhlaghi M., Derikvandy A. (2019c). Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere, 236: 124335.
Blaise C., Gagné F., Férard J.F., Eullaffroy P. (2008). Ecotoxicity of selected nano-materials to aquatic organisms. Environmental Toxicology, 23(5): 591-8.
Bockmann J., Lahl H., Eckert T., Unterhalt B. (2000). Blood titanium levels before and after oral administration titanium dioxide. Pharmazie, 55(2): 140-143.
Booth C.E., McDonald D.G., Simons B.P., Wood C.M. (1988). Effects of aluminium and low pH on net ion fluxes and ion balance in the brook trout (Salvelinus fontinalis). Canadian Journal of Fisheries and Aquatic Sciences, 45(9): 1563-1574.
Brayner R., Dahoumane S.A., Yéprémian C., Djediat C., Meyer M., Couté A., Fiévet F. (2010). ZnO nanoparticles: synthesis, characterization, and ecotoxicological studies. Langmuir, 26(9): 6522-6528.
Braz-Mota S., Campos, D.F., MacCormack T.J., Duarte, R.M., Val A.L., Almeida-Val V.M. (2018). Mechanisms of toxic action of copper and copper nanoparticles in two Amazon fish species: Dwarf cichlid (Apistogramma agassizii) and cardinal tetra (Paracheirodon axelrodi). Science of the Total Environment, 630: 1168-1180.
Bundschuh M., Filser J., Lí¼derwald S., McKee M.S., Metreveli G., Schaumann G.E., Schulz R., Wagner S. (2018). Nanoparticles in the environment: where do we come from, where do we go to? Environmental Sciences Europe, 30(1): 6.
Burgos-Aceves M.A., Lionetti L., Faggio C. (2019). Multidisciplinary haematology as prognostic device in environmental and xenobiotic stress-induced response in fish. Science of The Total Environment, 670(20): 1170-1183.
Chavali M.S., Nikolova M.P. (2019). Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Sciences, 1: 607.
Chen J., Liu M., Zhang J., Ying X., Jin L. (2004). Photocatalytic degradation of organic wastes by electrochemically assisted TiO2 photocatalytic system. Journal of Environmental Management, 70(1): 43-47.
Chen D., Zhang D., Yu J.C., Chan K.M. (2011). Effects of Cu2O nanoparticle and CuCl2 on zebrafish larvae and a liver cell-line. Aquatic Toxicology, 105 (3-4): 344-354
Chen R., Huo L., Shi X., Bai R., Zhang Z., Zhao Y., Chang Y., Chen C. (2014). Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. ACS Nano, 8(3): 2562-2574.
Chupani L., Niksirat H., Velíšek J., Stará A., Hradilová Å ., KolaÅ™ík J., Panacek A., Zusková E. (2018). Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. Ecotoxicology and Environmental Safety, 147: 110-116.
Cooper G.R., McDaniel V. (1970). Standard methods of clinical chemistry. Academic, New York. 159 p.
Ellinger J.J., Lewis I.A., Markley J.L. (2011). Role of aminotransferases in glutamate metabolism of human erythrocytes. Journal of Biomolecular NMR, 49(3): 221-229.
El-Sayed Y.S., Saad T.T., El-Bahr S.M. (2007). Acute intoxication of deltamethrin in monosex Nile tilapia, Oreochromis niloticus with special reference to the clinical, biochemical and haematological effects. Environmental Toxicology and Pharmacology, 24(3): 212-217.
Fan Z., Lu J.G. (2005). Zinc oxide nanostructures: synthesis and properties. Journal of Nanoscience and Nanotechnology, 5(10): 1561-1573.
Farkas J., Farkas P., Hyde D. (2004). Liver and gastroenterology tests. In: M. Lee (Ed). Basic Skills in Interpreting Laboratory Data, American Society of Health-System Pharmacists, Bethesda. pp: 330-336.
Fernández D., García-Gómez C., Babín M. (2013). In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in ï¬sh cells. Science of the Total Environment, 452-453: 262-274.
Fernandez-Cruz M.L., Lammel T., Connolly M., Conde E., Barrado A.I., Derick S., Perez Y., Fernandez M., Furger C., Navas J.M. (2013). Comparative cytotoxicity induced by bulk and nanoparticulated ZnO in the fish and human hepatoma cell lines PLHC-1 and Hep G2. Nanotoxicology, 7(5): 935-952.
Franklin N.M., Rogers N.J., Apte S.C., Batley G.E., Gadd G.E., Casey P.S. (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science and Technology, 41(24): 8484-8490.
Gagné F., André C., Skirrow R., Gélinas M., Auclair J., van Aggelen G., Turcotte P., Gagnon C. (2012). Toxicity of silver nanoparticles to rainbow trout: a toxicogenomic approach. Chemosphere, 89(5): 615-622.
Gagné F., Turcotte P., Auclair J., Gagnon C. (2013). The effects of zinc oxide nanoparticles on the metallome in freshwater mussels. Comparative Biochemistry and Physiology Part C, 158(1): 22-28.
Gagné F., Auclair J., Turcotte P., Gagnon C., Peyrot C., Wilkinson K. (2019). The influence of surface waters on the bioavailability and toxicity of zinc oxide nanoparticles in freshwater mussels. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 219: 1-11.
García-Gómez C., García S., Obrador A., Almendros P., González D., Fernández M.D. (2020). Effect of ageing of bare and coated nanoparticles of zinc oxide applied to soil on the Zn behaviour and toxicity to fish cells due to transfer from soil to water bodies. Science of The Total Environment, 706: 135713.
George S., Pokhrel S., Xia T., Gilbert B., Ji Z., Schowalter M., Rosenauer A., Damoiseaux R., Bradley K.A., Madler L., Nel A.E. (2010). Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano, 4(1): 15-29.
Ghalazy K.S. (1992). Hematological and physiological responses to sub lethal concentration of cadmium in a freshwater teleost, Tilapia zillii. Water Air and Soil Pollution, 64(3): 551-559.
Girigoswami K. (2018). Toxicity of metal oxide nanoparticles. In: Cellular and Molecular Toxicology of Nanoparticles, Springer, Cham. pp: 99-122.
Gottschalk F., Sun T.Y., Nowack B. (2013). Environmental concentrations of engineered nanomaterials: review of modelling and analytical studies. Environmental Pollution, 181: 287-300.
Handy R.D., Shaw B.J. (2007). Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health Risk and Society, 9(2): 125-144.
Handy R., Henry T., Scown T., Johnston B., Tyler C. (2008). Manufactured nanoparticles: their uptake and effects on fish - a mechanistic analysis. Ecotoxicology, 17(5): 396-409.
Hao L., Chen L., Hao J., Zhong N. (2013). Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): A comparative study with its bulk counterparts. Ecotoxicology and Environmental Safety, 91: 52-60.
Hogeboom G.H., Schneider W.C., Palade G.E. (1948). Cytochemical studies of mammalian tissues: I. Isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. Journal of Biological Chemistry, 172(2): 619-635.
Jovanović B., Palić D. (2012). Immunotoxicology of non-functionalized engineered nanoparticles in aquatic organisms with special emphasis on fish - review of current knowledge, gap identification, and call for further research. Aquatic Toxicology, 118-119: 141-151.
Kahru A., Dubourguier H.C., Blinova I., Ivask A., Kasemets K. (2008). Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: A mini review. Sensors, 8(8): 5153-5170.
Karlsson H.L., Toprak M.S., Fadeel B. (2015). Toxicity of metal and metal oxide nanoparticles. In Handbook on the Toxicology of Metals. Academic Press. pp: 75-112.
Kaya H., Aydin F., Gurkan M., Yilmaz S., Ates M., Demir V., Arslan Z. (2015). Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia (Oreochromis niloticus). Environmental Toxicology and Pharmacology, 40(3): 936947.
Kaya H., Aydın F., Gí¼rkan M., Yılmaz S., Ates M., Demir V., Arslan Z. (2016). A comparative toxicity study between small and large size zinc oxide nanoparticles in tilapia (Oreochromis niloticus): organ pathologies, osmoregulatory responses and immunological parameters. Chemosphere, 144: 571-582.
Kaya H., Duysak M., Akbulut M., Yılmaz S., Gí¼rkan M., Arslan Z., Demir V., AteÅŸ M. (2017). Effects of sub-chronic exposure to zinc nanoparticles on tissue accumulation, serum biochemistry and histopathological changes in tilapia (Oreochromis niloticus) Environmental Toxicology, 32(4): 1213-1225.
King-Heiden T.C., Wiecinski P.N., Mangham A.N., Met K.M. (2009). Quantum dot nanotoxicity assessment using the zebrafish embryo. Environmental Science and Technology, 43(5): 1605-1611.
Krishnapriya K., Shobana G., Narmadha S., Ramesh M., Maruthappan V. (2017). Sublethal concentration of bisphenol A induces hematological and biochemical responses in an Indian major carp Labeo rohita. Ecohydrology and Hydrobiology, 17(4): 306-313.
Kumar N., Chandan N.K., Wakchaure G., Singh N.P. (2020). Synergistic effect of zinc nanoparticles and temperature on acute toxicity with response to biochemical markers and histopathological attributes in fish. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 229: 108678.
Lavanya S., Ramesh M., Kavitha C., Malarvizhi A. (2011). Hematological, biochemical and ionoregulatory responses of Indian major carp Catla catla during chronic sublethal exposure to inorganic arsenic. Chemosphere, 82(7): 977-985.
Lee J., Kim J., Shin Y., Ryu J., Eom I., Lee J.S., Kim Y., Kim P., Choi K., Lee B. (2014). Serum and ultrastructure responses of common carp (Cyprinus carpio L.) during long-term exposure to zinc oxide nanoparticles. Ecotoxicology and Environmental Safety, 104: 9-17.
Li J., Chen Z., Huang R., Miao Z., Cai L., Du Q. (2018). Toxicity assessment and histopathological analysis of nano-ZnO against marine fish (Mugilogobius chulae) embryos. Journal of Environmental Sciences, 73: 78-88.
Li M., Lin D.H., Zhu L.Z. (2013). Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environmental Pollution, 173: 97-102.
Li Z.H., Velisek J., Zlabek V., Grabic R., Machova J., Kolarova J., Randak T. (2011). Chronic toxicity of verapamil on juvenile rainbow trout (Oncorhynchusmykiss): Effects on morphological indices, hematological parameters and antioxidant responses. Journal of Hazardous Materials, 185: 870-880.
Li N., Xia T., Nel A.E. (2008). The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radical Biology and Medicine, 44(9): 1689-1699.
Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.I. (1951). Protein measurement with folin phenol reagent. Journal of Biological Chemistry, 193(1): 265-275.
Lowry G.V., Gregory K.B., Apte S.C., Lead J.R. (2012). Transformations of nanomaterials in the environment. Environmental Science and Technology, 46: 6893-6899.
Ma H., Diamond S.A. (2013). Phototoxicity of TiO2 nanoparticles to Zebra fish (Damio rerio) is dependent on life stage. Environmental toxicology and chemistry, 32: 2139-2143.
Ma H., Williams P.L., Diamond S.A. (2013). Ecotoxicity of manufactured ZnO nanoparticles-a review. Environmental Pollution, 172: 76-85.
Márquez J.C.M., Partida A.H., del Carmen M., Dosta M., Mejía J.C., Martínez J.A.B. (2018). Silver nanoparticles applications (AgNPS) in aquaculture. International Journal of Fisheries and Aquatic Studies, 6(2): 05-11.
Martinez C.B.R., Nagae M.Y., Zaia C.T.B.V., Zaia D.A.M. (2004). Morphological and physiological acute effects of lead in the neotropical fish, Prochiloduslineatus. Brazilian Journal of Biology, 64(4): 797-807.
Medina C., Santos-Martinez M.J., Radomski A., Corrigan O.I., Radomski M.W. (2009). Nanoparticles: pharmacological and toxicological significance. British Journal of Pharmacology, 150(5): 552-558.
Mieiro C.L., Martins M., da Silva M., Coelho J.P., Lopes C.B., da Silva A.A., Alves J., PereiraE., Pardal M., Costa M.H., Pacheco M. (2019). Advances on assessing nanotoxicity in marine fish – the pros and cons of combining an ex vivo approach and histopathological analysis in gills. Aquatic Toxicology, 217: 105322.
Min E.Y., Kang J.C. (2008). Effect of waterborne benomyl on the hematological and antioxidant parameters of the Nile tilapia, Oreochromis niloticus. Pesticide Biochemistry and Physiology, 92(3): 138-143.
Moore M.N. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 32 (8): 967-976.
Morcillo P., Esteban M.í., Cuesta A. (2016). Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line. Chemosphere, 144: 225-233.
Nagaveni K., Sivalingam G., Hegde M.S., Madras G. (2004). Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environmental Science and Technology, 38(5): 1600-1604.
Nelson D.A., Morris M.W. (1989). Basic methodology. Hematology and coagulation, part IV. In: D.A. Nelson, J.B. Henry (Eds.), Clinical diagnosis and management by laboratory methods, 7th ed. Saunder Company, Philadelphia, USA. pp: 578-724.
Nowack B., Bucheli, T.D., 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150: 5-22.
Onuegbu C.U., Aggarwal A., Singh N.B. (2018). ZnO nanoparticles as feed supplement on growth performance of cultured African catfish fingerlings. Journal of Scientific and Industrial Research, 77: 213-218.
Pacheco M., Santos M.A. (2002). Biotransformation, genotoxicanhistopathological effects of environmental contaminants in European eel, Anguilla anguilla (L). Ecotoxicology and Environmental Safety, 53(3): 331-347.
Piccinno F., Gottschalk F., Seeger S., Nowack B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14: 1-11.
Plum L.M., Rink L., Haase H. (2010). The essential toxin: impact of zinc on human health. International Journal of Environmental Research and Public Health, 7:1342–1365.
Poopal R.K., Ramesh M., Dinesh B. (2013). Short-term mercury exposure on Na+/K+-ATPase activity and ionoregulation in gill and brain of an Indian major carp, Cirrhinus mrigala. Journal of Trace Elements in Medicine and Biology, 27(1): 70-75.
Puzyn T., Rasulev B., Gajewicz A., Hu X., Dasari T.P., Michalkova A., Hwang H.M., Toropov A., Leszczynska D., Leszczynski J. (2011). Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nature Nanotechnology, 6(3): 175-178.
Ramesh M., Sankaran M., Veera-Gowtham V., Poopal R.K. (2014). Hematological, biochemical and enzymological responses in an Indian major carp Labeo rohita induced by sublethal concentration of waterborne selenite exposure. Chemico-Biological Interactions, 207: 67-73.
Ramesh M., Anitha S., Poopal R.K., Shobana C. (2018). Evaluation of acute and sublethal effects of chloroquine (C18H26CIN3) on certain enzymological and histopathological biomarker responses of a freshwater fish Cyprinus carpio. Toxicology Reports, 5: 18-27.
Ramesh M., Narmadha S., Poopal R.K. (2015). Toxicity of furadan (carbofuran 3% g) in Cyprinus carpio: Haematological, biochemical and enzymological alterations and recovery response. Beni-Suef University Journal of Basic and Applied Sciences, 4(4): 314-326.
Reitman S., Franckel S. (1957). A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminase. American Journal of Clinical Pathology, 28(1): 56-63.
Remya A.S., Ramesh M., Saravanan M., Poopal R.K., Bharathi S., Nataraj D. (2015). Iron oxide nanoparticles to an Indian major carp, Labeo rohita: Impacts on hematology, iono regulation and gill Na+/K+ ATPase activity. Journal of King Saud University – Science, 27(2): 151-160.
Rocha T.L., Mestre N.C., Saboia-Morais S.M.T., Bebianno M.J. (2017). Environmental behaviour and ecotoxicity of quantum dots at various trophic levels: a review. Environment International, 98: 1-17.
Rudramurthy G.R., Swamy M.K. (2018). Potential applications of engineered nanoparticles in medicine and biology: An update. Journal of Biological Inorganic Chemistry, 23(8): 1185-1204.
Rusia V., Sood S.K. (1992). Routine hematological tests. In: M. Kanai, L., Mukerjee, (Eds.), Medical laboratory technology, Vol. I. Fifth reprint. Tata McGraw Hill Publishing Company Limited, New Delhi. Pp: 252-258.
Saravanan M., Karthika S., Malarvizhi A., Ramesh M. (2011). Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: Hematological, biochemical, ionoregulatory and enzymological responses. Journal of Hazardous Materials, 195(1): 188-194.
Sarkheil M., Sourinejad I., Mirbakhsh M., Kordestani D., Johari S.A. (2017). Antibacterial activity of immobilized silver nanoparticles on TEPA-Den-SiO2 against shrimp pathogen, Vibrio sp. Persian1. Aquaculture Research, 48: 2120-2132.
Sathya V., Ramesh M., Poopal R.K., Dinesh B. (2012). Acute and sublethal effects in an Indian major carp Cirrhinus mrigala exposed to silver nitrate: Gill Na+/K+-ATPase, plasma electrolytes and biochemical alterations. Fish & Shellfish Immunology, 32(5): 862-868.
Scown T.M., van Aerle R., Tyler C.R. (2010). Do engineered nanoparticles pose a significant threat to the aquatic environment? Critical Reviews in Toxicology, 40(7): 653-670.
Sharma J.N., Pattadar D.K., Mainali B.P., Zamborini F.P. (2018). Size determination of metal nanoparticles based on electrochemically measured surface"area"to"volume ratios. Analytical Chemistry, 90(15): 9308-9314.
Shaw B.J., Handy R.D. (2011). Physiological effects of nanoparticles on fish: A comparison of nanometals versus metal ions. Environment International, 37(6): 1083-1097.
Smith C.J., Shaw B.J., Handy R.D. (2007). Toxicity of single walled carbon nanotubes to rainbow trout, (Onchorhynchus mykiss): respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology, 82(2):94-109.
Song L., Vijver M.G., Peijnenburg W.J., Galloway T.S., Tyler C.R. (2015). A comparative analysis on the in vivo toxicity of copper nanoparticles in three species of freshwater fish. Chemosphere, 139: 181-189.
Srikanth K., Pereira E., Duarte A.C., Rao J.V. (2016). Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Protoplasma, 253 (3): 873–884.
Sruthi S., Ashtami J., Mohanan P.V. (2018). Biomedical application and hidden toxicity of Zinc oxide nanoparticles. Materials Today Chemistry, 10: 175-186.
Suganthi P., Murali M., Athif P., Bukhari A.S., Mohamed H.S., Basu H., Singhal R.K. (2019). Haemato-immunological studies in ZnO and TiO2 nanoparticles exposed euryhaline fish, Oreochromis mossambicus. Environmental Toxicology and Pharmacology, 66: 55-61.
Theodore L. (2006). Nanotechnology: basic calculations for engineers and scientists. John Wiley and Sons. 459 p.
Turan N.B., Erkan, H.S., Engin, G.O., Bilgili M.S. (2019). Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity"”A review. Process Safety and Environmental Protection, 130: 238-249.
Umamaheswari S., Renuka S.S., Ramesh M., Poopal R.K. (2019). Chronic amoxicillin exposure affects Labeo rohita: assessment of hematological, ionic compounds, biochemical, and enzymological activities. Heliyon, 5(4): e01434.
Venkateswara Rao J. (2006). Sublethal effects of an organophosphorus insecticide on biochemical parameters of tilapia Oreochromis mossambicus. Comparative Biochemistry and Physiology Part C, 143(4): 492-498.
Vuorinen P.J., Keinanen M., Peuranen S., Tigerstedt C. (2003). Reproduction, blood and plasma parameters and gill histology of vendace Coregonus albula L. in long-term exposure to acidity and aluminum. Ecotoxicology and Environmental Safety, 54(3): 255-276.
Wang C., Chen, H.Y.W. (2018). Cytosolic aspartate aminotransferase mediates the mitochondrial membrane potential and cell survival by maintaining the calcium homeostasis of BV2 microglia. Neuroreport, 29(2): 99-105.
Wang H., Wick R., Xing B. (2009). Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution, 157(4): 1171-1177.
Wiench K., Wohlleben W., Hisgen V., Radke K., Salinas E., Zok S., Landsiedel R. (2009). Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere, 76(10): 1356-1365.
Wu Q., Nouara A., Li Y., Zhang M., Wang W., Tang M., Ye B., Ding J., Wang D. (2013). Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere, 90(3): 1123-1131.
Xiong D., Fang T., Yu L., Sima X., Zhu W. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409(8): 1444-1452.
Yan L., Zhao F., Li S.J., Hu Z.B., Zhao Y.L. (2011). Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes and graphenes. Nanoscale, 3(2): 362-382.
Younis E.M., Abdel-Warith A.A., Al-Asgah N.A. (2012). Hematological and enzymatic responses of Nile tilapia Oreochromis niloticus during short and long term sublethal exposure to zinc. African Journal of Biotechnology, 11: 4442-4446.
Yousef M.I., Mutar T.F., Kamel M.A.E.N. (2019). Hepato-renal toxicity of oral sub-chronic exposure to aluminum oxide and/or zinc oxide nanoparticles in rats. Toxicology Reports, 6: 336-346.
Zhao X., Wang S., Wu Y., You H., Lv L. (2013). Acute ZnO Nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquatic Toxicology, 136-137: 49-59.
Zhu X.S., Wang J.X., Zhang X.Z., Chang Y., Chen Y.S. (2009). The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology, 20(19): 195103.
Zhu X., Zhu L., Duan Z., Qi R., Li Y., Lang Y. (2008). Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebra fish (Danio rerio) early developmental stage. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 43(3): 278-284.