Physiological, Biochemical and Neurochemical responses of Cirrhinus mrigala upon short term exposure to Cerium oxide

Sharath Chandra, Sandya Sukumaran


The current study was performed to ascertain the biochemical and physiological impact of cerium oxide (CeO2) on freshwater fish Cirrhinus mrigala, which are widely consumed. Biochemical, neurochemical and physiological modifications were evaluated and LC50 of CeO2 was found to be 22 ppm, observed for 24 h. Further 1/10th of the LC50 concentration of CeO2 (2.2 ppm) was used for short term investigation at 96 h. The results demonstrate an increase in physiological levels of serum lactate dehydrogenase (LDH), aspartate transaminase (AST) and alanine transaminase (ALT) compared to control groups. Studies revealed variations in oxidative stress markers with a significant reduction in the serum superoxide dismutase (SOD) and catalase (CAT) activities and an increase in malondialdehyde (MDA). The study reported the increase in brain glutamate concentrations indicating possible brain tissue damage. The above analysis highlights the potential toxicological impact of CeO2 on freshwater fish and their ecosystem.


Biochemistry, Cirrhinus mrigala, Neurochemical response, Physiology.

Full Text:



Abhijith B.D., Ramesh M., Poopal R.K. (2016). Responses of metabolic and antioxidant enzymatic activities in gill, liver and plasma of Catla catla during methyl parathion exposure. The Journal of Basic and Applied Zoology, 77: 31-40.

Almeida J.A., Novelli E.L.B., Dal-Pai Silva M., AlvesJunior R. (2001). Environmental cadmium exposure and metabolic responses of the Nile tilapia Oreochromis niloticus. Environmental Pollution, 114: 169-175.

Amdur M.O., Dull J., Klaassen C.D. (1991). Toxicology: The Basic Science of Poison. Pergamon Press.

Banaee M., Soltanian S., Sureda A., Gholamhosseini A., Haghi B.N., Akhlaghi M., Derikvandy A. (2019a). Evaluation of single and combined effects of cadmium and micro-plastic particles on biochemical and immunological parameters of common carp (Cyprinus carpio). Chemosphere, 236, 124335.

Banaee M., Sureda A., Taheri S., Hedayatzadeh F. (2019b). Sub-lethal effects of dimethoate alone and in combination with cadmium on biochemical parameters in freshwater snail, Galba truncatula. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 220: 62-70.

Banaee M., Tahery S., Nematdoost Haghi B., Shahafve S., Vaziriyan M. (2019c). Blood biochemical changes in common carp (Cyprinus carpio) upon co-exposure to titanium dioxide nanoparticles and paraquat. Iranian Journal of Fisheries Sciences, 18(2): 242-255.

Bernet D., Schmidt H., Meier W., Burkhardt-Hol P., Wahli T. (1991). Histopathology in fish: proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases, 22: 25-34.

Buege J.A., Aust S.D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 31; 52: 302-10.

Celardo I., Pedersen J.Z., Traversa E., Ghibelli L. (2011). Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 3(4): 1411-20.

Chen C.Y., Folt C.L. (2000). Bioaccumulation and diminution of arsenic and lead in a freshwater food web. Environmental Science and Technology, 34: 3878-3884.

Chen P.J., Su C.H., Tseng C.Y., Tan S.W., Cheng C.H. (2011). Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish. Marine Pollution Bulletin, 63(5): 339-46.

Cooper G.R., McDaniel V. (1970). Standard methods of clinical chemistry. Academic, New York. 352 p.

Das K., Samanta L., Chainy G.B.N. (2000). A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Indian Journal of Biochemistry and Biophysics, 37: 201-204.

Di Giulio R.T., Hinton D.E. (2008). The Toxicology of Fishes, CRC Press.1096 p.

Ghelichpour M., Mirghaed A.T. (2019). Effects of sublethal exposure to new pesticides lufenuron and flonicamid on common carp, Cyprinus carpio, hydromineral balance to further saltwater exposure. International Journal of Aquatic Biology, 7(4): 195-201.

Goth L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196(2-3): 143-51.

Huang C.H., Chang R.J., Huang S.L., Chen W. (2003). Dietary vitamin E supplementation affects tissue lipid peroxidation of hybrid tilapia, Oreochromis niloticus x O. aureus. Comparative Biochemistry and Physiology Part B, 134: 265-270.

Khan S.B., Faisal M., Rahman M.M., Jamal A. (2011). Exploration of CeO2 nanoparticles as a chemi-sensor and photo-catalyst for environmental applications. Science of the Total Environment, 409(15): 2987-92.

Klaper R., Arndt D., Setyowati K., Chen J., Goetz F. (2010). Functionalization impacts the effects of carbon nanotubes on the immune system of rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 100: 211–217.

Li Z.H., Zlabek V., Velisek J., Grabic R., Machova J., Randak T. (2010). Modulation of antioxidant defence system in brain of rainbow trout (Oncorhynchus mykiss) after chronic carbamazepine treatment. Comparative Biochemistry and Physiology - Part C: Toxicology and Pharmacology, 31: 137-41

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1): 265-75.

MacLeod J.C., Pessah E. (1973). Temperature effects on mercury accumulation, toxicity and metabolic rate in rainbow trout, Salmo gairdneri. Journal of the Fisheries Research Board of Canada, 30: 485-492.

Manev H., Favaron M.A., Guidotti A.L., Costa E.R. (1989). Delayed increase of Ca2+ influx elicited by glutamate: role in neuronal death. Molecular Pharmacology, 36(1): 106-12.

Manke A., Wang L., Rojanasakul Y. (2013). Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMedical Research International, 916-942.

Min E.Y., Ju-Chan K. (2008). Effect of waterborne benomyl on the hematological and antioxidant parameters of the Nile tilapia, Oreochromis niloticus. Pesticide Biochemistry and Physiology, 92(3): 138-143.

Mirghaed A.T., Yarahmadi P., Craig P.M., Farsani H.G., Ghysvandi N., Eagderi S. (2018). Hemato-immunological, serum metabolite and enzymatic stress response alterations in exposed rainbow trout (Oncorhynchus mykiss) to nanosilver. International Journal of Aquatic Biology, 6(4): 221-234.

Raisi M., Pourkhabbaz H.R., Banaee M., Pourkhabbaz A., Javanmardi S. (2018). Effects of Pirimicarb carbamate insecticide alone and in combination with lead (Pb) on biochemical parameters of soft tissues in freshwater snail, Galba truncatula. International Journal of Aquatic Biology, 6(3): 126-137.

Raju T.R., Kutty B.M., Sathyaprabha T.N., Shankarnarayana Rao B.S. (2004). Brain and behavior. National Institute of Mental Health and Neurosciences, Bangalore. pp. 134-138.

Rao V.J. (2006). Sublethal effects of an organophosphorus insecticide (RPR-II) on biochemical parameters of tilapia, Oreochromis mossambicus. Comparative Biochemistry and Physiology - Part C, 143 (4): 492–498.

Reda F.A., Bakr Ahmad M., Kamel Sayed A., Sheba, Doaa R. Abdul-Haleem. (2010). A mathematical model for estimating the LC50 or LD50 among an in seet life cycle. Egyptian Academic Journal of Biological Sciences, 32: 75-81.

Reitman S., Franckel S. (1957). A colorimetric method for the determination of serum glutamic oxalo acetic and glutamic pyruvic transaminase. American Journal of Clinical Pathology, 28: 56-63.

Safari R. (2016). Toxic effects of Cadmium on antioxidant defense systems and lipid peroxidation in Acipenser persicus (Borodin, 1897). International Journal of Aquatic Biology, 3(6): 425-432.

Simakani P., Abolhasani M.H., Hoseini S.M. (2018). Determination of mancozeb toxicity and biochemical effects in common carp (Cyprinus carpio). International Journal of Aquatic Biology, 6(3): 157-161.

Winston G.W., Di Giulio R.T. (1991). Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology, 19: 137-161.


  • There are currently no refbacks.