Antioxidant and antibactrial properties of protein hydrolysate from Persian Gulf Crab (Grapsus albacarinous) as affected by progress of hydrolysis

Mina Emadi Shaibani, Behrooz Heidari, Saber Khodabandeh, Shirin Shahangian, Saeed Mirdamadi, Mahta Mirzaei

Abstract

Antibacterial and antioxidant activity of the rocky shore crab, Grapsus albolineathus, protein hydrolysate (CPH), with different degree of hydrolysis (DH) prepared using alcalase was investigated. The results showed that by increasing DH with reaction time up to 90 min, the DPPH radical scavenging activity of the hydrolysates raise, followed by a decrease in the next stages from 90 to 180 min.Interestingly, ABTS radical scavenging of the hydrolysates increase up to 120 min, and CPH120 show the highest activity with no significant difference with CPH90 and CPH180. The degree of hydrolysis applied a significant influence on the antibacterial activity of crab hydrolysates against gram-positive bacteria, with a significant increase up to 90 min. The maximum zone of inhibitions was recorded against Listeria monocytogene for CPH90:14.55 mm. The results suggest that the alcalase hydrolysis of rocky shore crab can produce bioactive peptides with potent antioxidant and antibacterial activities as affected by the degree of hydrolysis up to a certain level.

Keywords

Crab protein, Hydrolysis, Antioxidant, Antibacterial.

Full Text:

PDF

References

Adler-Nissen J. (1986). Enzymic hydrolysis of food proteins: Elsevier applied science publishers. 427 p.

Alemán A., Giménez B., Montero P., Gómez-Guillén M. (2011). Antioxidant activity of several marine skin gelatins. LWT-Food Science and Technology, 44(2): 407-413.

Antunes-Valcareggi S.A., Ferreira S.R., Hense H. (2017). Enzymatic hydrolysis of blue crab (Callinectes Sapidus) waste processing to obtain chitin, protein, and astaxanthin-enriched extract. International Journal of Environmental and Agriculture Research, 3(1): 81-92.

Bahar A.A., Ren D. (2013). Antimicrobial peptides. Pharmaceuticals, 6(12): 1543-1575.

Battison A.L., Summerfield R., Patrzykat A. (2008). Isolation and characterisation of two antimicrobial peptides from haemocytes of the American lobster Homarus americanus. Fish and Shellfish Immunology, 25(1-2): 181-187.

Beaulieu L., Thibodeau J., Bonnet C., Bryl P., Carbonneau M.-É. (2013). Detection of antibacterial activity in an enzymatic hydrolysate fraction obtained from processing of Atlantic rock crab (Cancer irroratus) by-products. Pharma Nutrition, 1(4): 149-157.

Binsan W., Benjakul S., Visessanguan W., Roytrakul S., Faithong N., Tanaka M., Kishimura H. (2008). Composition, antioxidative and oxidative stability of mungoong, a shrimp extract paste, from the cephalothorax of white shrimp. Journal of Food Lipids, 15(1): 97-118.

Dey S.S., Dora K.C. (2014). Optimization of the production of shrimp waste protein hydrolysate using microbial proteases adopting response surface methodology. Journal of Food Science and Technology, 51(1): 16-24.

Doyen A., Saucier L., Beaulieu L., Pouliot Y., Bazinet L. (2012). Electroseparation of an antibacterial peptide fraction from snow crab by-products hydrolysate by electrodialysis with ultrafiltration membranes. Food Chemistry, 132(3): 1177-1184.

Dryáková A., Pihlanto A., Marnila P., Čurda L., Korhonen H. J. (2010). Antioxidant properties of whey protein hydrolysates as measured by three methods. European Food Research and Technology, 230(6): 865-874.

Ennaas N., Hammami R., Beaulieu L., Fliss I. (2015). Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochemical and Biophysical Research Communications, 462(3): 195-200.

Gallegos‐Tintoré S., Torres‐Fuentes C., Martínez‐Ayala A.L., Solorza‐Feria J., Alaiz M., Girón‐Calle J., Vioque J. (2011). Antioxidant and chelating activity of Jatropha curcas L. protein hydrolysates. Journal of the Science of Food and Agriculture, 91(9): 1618-1624.

García-Moreno P.J., Batista I., Pires C., Bandarra N.M., Espejo-Carpio F.J., Guadix A., Guadix E.M. (2014). Antioxidant activity of protein hydrolysates obtained from discarded Mediterranean fish species. Food Research International, 65: 469-476.

Ghanbari R., Ebrahimpour A., Abdul-Hamid A., Ismail A., Saari N. (2012). Actinopyga lecanora hydrolysates as natural antibacterial agents. International Journal of Molecular Sciences, 13(12): 16796-16811.

Guerard F., Guimas L., Binet A. (2002). Production of tuna waste hydrolysates by a commercial neutral protease preparation. Journal of Molecular Catalysis B: Enzymatic, 19: 489-498.

Gunasekaran J., Kannuchamy N., Kannaiyan S., Chakraborti R., Gudipati V. (2015). Protein hydrolysates from shrimp (Metapenaeus dobsoni) head waste: optimization of extraction conditions by response surface methodology. Journal of Aquatic Food Product Technology, 24(5): 429-442.

Hoyle N.T., Merritt J. (1994). Quality of fish protein hydrolysates from herring (Clupea harengus). Journal of Food Science, 59(1): 76-79.

Je J.-Y., Kim S.-Y., Kim S.-K. (2005). Preparation and antioxidative activity of hoki frame protein hydrolysate using ultrafiltration membranes. European Food Research and Technology, 221(1-2): 157-162.

Jeon Y.-J., Byun H.-G., Kim S.-K. (1999). Improvement of functional properties of cod frame protein hydrolysates using ultrafiltration membranes. Process Biochemistry, 35(5): 471-478.

Kannan A., Hettiarachchy N.S., Marshall M., Raghavan S., Kristinsson H. (2011). Shrimp shell peptide hydrolysates inhibit human cancer cell proliferation. Journal of the Science of Food and Agriculture, 91(10): 1920-1924.

Karnjanapratum S., Benjakul S. (2015). Antioxidative gelatin hydrolysate from unicorn leatherjacket skin as affected by prior autolysis. International Aquatic Research, 7(2): 101-114.

Karnjanapratum S., O'Callaghan Y.C., Benjakul S., O'Brien N. (2016). Antioxidant, immunomodulatory and antiproliferative effects of gelatin hydrolysate from unicorn leatherjacket skin. Journal of the Science of Food and Agriculture, 96(9): 3220-3226.

Khiari Z., Omana D.A., Pietrasik Z., Betti M. (2013). Evaluation of poultry protein isolate as a food ingredient: Physicochemical properties and sensory characteristics of marinated chicken breasts. Journal of Food Science, 78(7): S1069-S1075.

Kim S.-K., Kim Y.-T., Byun H.-G., Nam K.-S., Joo D.-S., Shahidi F. (2001). Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. Journal of Agricultural and Food Chemistry, 49(4): 1984-1989.

Klompong V., Benjakul S., Kantachote D., Shahidi F. (2007). Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102(4): 1317-1327.

Kristinsson H.G., Rasco B.A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical Reviews in Food Science and Nutrition, 40(1): 43-81.

Ngo D.-H., Kim S.-K. (2013). Marine bioactive peptides as potential antioxidants. Current Protein and Peptide Science, 14(3): 189-198.

Ovissipour M., Abedian A., Motamedzadegan A., Rasco B., Safari R., Shahiri H. (2009). The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from Persian sturgeon (Acipenser persicus) viscera. Food Chemistry, 115(1): 238-242.

Petrova I., Tolstorebrov I., Eikevik T.M. (2018). Production of fish protein hydrolysates step by step: technological aspects, equipment used, major energy costs and methods of their minimizing. International Aquatic Research, 1-19.

Portella A.C.F., Karp S., Scheidt G.N., Woiciechwski A.L., Parada J.L., Soccol C.R. (2009). Modelling antagonic effect of lactic acid eacteria supernatants on some pathogenic bacteria. Brazilian Archives of Biology and Technology, 52: 29-36.

Rajapakse N., Mendis E., Byun H.-G., Kim S.-K. (2005). Purification and in vitro antioxidative effects of giant squid muscle peptides on free radical-mediated oxidative systems. The Journal of Nutritional Biochemistry, 16(9): 562-569.

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10): 1231-1237.

Ryan J.T., Ross R.P., Bolton D., Fitzgerald G.F., Stanton C. (2011). Bioactive peptides from muscle sources: meat and fish. Nutrients, 3(9): 765-791.

Shahidi F., Han X.-Q., Synowiecki J. (1995). Production and characteristics of protein hydrolysates from capelin (Mallotus villosus). Food Chemistry, 53(3): 285-293.

Sila A., Hedhili K., Przybylski R., Ellouz-Chaabouni S., Dhulster P., Bougatef A., Nedjar-Arroume N. (2014a). Antibacterial activity of new peptides from barbel protein hydrolysates and mode of action via a membrane damage mechanism against Listeria monocytogenes. Journal of Functional Foods, 11: 322-329.

Sila A., Nedjar-Arroume N., Hedhili K., Chataigné G., Balti R., Nasri M., Dhulster P., Bougatef A. (2014b). Antibacterial peptides from barbel muscle protein hydrolysates: Activity against some pathogenic bacteria. LWT-Food Science and Technology, 55(1): 183-188.

Song L., Li T., Yu R., Yan C., Ren S., Zhao Y. (2008). Antioxidant activities of hydrolysates of Arca subcrenata prepared with three proteases. Marine Drugs, 6(4): 607-619.

Sperstad S.V., Haug, T., Blencke H.-M., Styrvold O.B., Li C., Stensvåg K. (2011). Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnology Advances, 29(5): 519-530.

Sreeramulu G., Zhu Y., Knol W. (2001). Characterization of antimicrobial activity in Kombucha fermentation. Acta Biotechnologica, 21(1): 49-56.

Tafreshi S.-Y. H., Mirdamadi S., Norouzian D., Khatami S., Sardari S. (2010). Optimization of non-nutritional factors for a cost-effective enhancement of nisin production using orthogonal array method. Probiotics and Antimicrobial Proteins, 2(4): 267-273.

Turcotte C., Lacroix C., Kheadr E., Grignon L., Fliss I.L. (2004). A rapid turbidometric microplate bioassay for accurate quantification of lactic acid bacteria bacteriocins. International Journal of Food Microbiology, 90(3): 283-293.

Wang B., Li L., Chi C.-F., Ma J.-H., Luo H.-Y., Xu Y.-f. (2013). Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chemistry, 138(2-3): 1713-1719.

Wiriyaphan C., Chitsomboon B., Yongsawadigul J. (2012). Antioxidant activity of protein hydrolysates derived from threadfin bream surimi byproducts. Food Chemistry, 132(1): 104-111.

Yoon, N. Y., Shim, K.-B., Lim C.-W., Kim, S.-B. (2013). Antioxidant and angiotensin I converting enzyme inhibitory activities of red snow crab Chionoecetes japonicas shell hydrolysate by enzymatic hydrolysis. Fisheries and Aquatic Sciences, 16(4): 237-242.

You L., Zhao, M., Cui, C., Zhao H., Yang B. (2009). Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innovative Food Science and Emerging Technologies, 10(2): 235-240.

Zhang L., Liu Y., Tian X., Tian Z. (2015). Antimicrobial Capacity and Antioxidant Activity of Enzymatic Hydrolysates of Protein from Rushan Bay Oyster (Crassostrea gigas). Journal of Food Processing and Preservation, 39(4): 404-412.

Refbacks

  • There are currently no refbacks.