Modelling potential distribution of fluvial fish species for expanding conservation knowledge: Case study of the genus Barbus in Iran

Hossein Mostafavi, Jafar Kambouzia

Abstract

Species inhabiting fresh waters are severely influenced by anthropogenic factors. Effective management and conservation plans require high accurate and reliable species distribution forecasts. Here, we modelled potential distribution of the genus Barbus in Iran, based on environmental variables using Species Distribution Models (SDMs). Six environmental predictors (i.e. slope, bankfull width, elevation, mean air temperature, range of air temperature and annual precipitation) were applied for modelling. The models were selected among different technique (GLM, GAM, CTA, SRE, GBM, RF, MARS, and FDA) which their results were summarized through ensemble forecasting approaches. According to the TSS (True Skill Statistic), the accuracy of the implemented models was greater than 0.8. The results showed that the projected distributions not only were observed in the same recorded basins but also in the new basins. Presented results deepen the conservation knowledge in Iran and act as a guidance for management decisions aimed at legal identification of critical habitats for species as well as informing them for translocation of threatened or captive-bred populations.

Keywords

Barbel, Cyprinid, Conservation, Freshwater.

Full Text:

PDF

References

Abdoli A., Naderi M. (2009). Biodiversity of fishes of the southern basin of the Caspian ‎Sea‎. Abzian Scientific Publications, Tehran. 238 p. (In Farsi)

Amiri K., Shabanipour N., Eagderi S. (2017). Using kriging and co-kriging to predict distributional areas of Kilka species (Clupeonella spp.) in the southern Caspian Sea. International Journal of Aquatic Biology, 5(2): 108-113.

Araújo M.B., New M. (2007). Ensemble forecasting of species distributions. Trends in Ecology and Evolution, 22: 42-47.

Berg L. (1949). Presnovodnye ryby Irana i sopredel'nykh stran [Freshwater fishes of Iran and adjacent countries]. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 8: 783-858.

Buisson L., Blanc L., Grenouillet G. (2008). Modelling stream fish species distribution in a river network: the relative effects of temperature versus physical factors. Ecology of Freshwater Fish, 17: 244-257.

Chefaoui R.M., Lobo J.M. (2008). Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling, 210: 478-486.

De Jager A., Vogt J. (2010). Development and demonstration of a structured hydrological feature coding system for Europe. Hydrological Sciences Journal, 55: 661-675.

Dudgeon D., Arthington A. H., Gessner M.O., Kawabata Z.I., Knowler D.J., Lévêque C., Sullivan C.A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81(2): 163-182.

Esmaeili H.R., Sayyadzadeh G., Eagderi S., Abbasi K. (2018). Checklist of freshwater fishes of Iran. FishTaxa, 3(3): 1-95.

Filipe A.F., Markovic D., Pletterbauer F., Tisseuil C., De Wever A., Schmutz S., Bonada N., Freyhof J. (2013). Forecasting fish distribution along stream networks: brown trout (Salmo trutta) in Europe. Diversity and Distributions, 19: 1059-1071.

Ghasemi H., Jouladeh Roudbar A., Eagderi S., Abbasi K., Vatandoust S., Esmaeili H.R. (2015). Ichthyofauna of Urmia basin: Taxonomic diversity, distribution and conservation, Iranian Journal of Ichthyology, 2(3): 177-193.

Guisan A., Thuiller W., Zimmermann N.E. (2017). Habitat Suitability and Distribution Models: with Applications in R. Cambridge: Cambridge University Press. 478 p.

Guisan A., Tingley R., Baumgartner J.B., Naujokaitis-Lewis I., Sutcliffe P.R. (2013). Predicting species distributions for conservation decisions. Ecology Letter, 16(12): 1424-1435.

Hastie T., Tibshirani R., Friedman J. (2009). The elements of statistical learning: Data Mining, Inference, and Prediction (2nd ed., Vol. 1). Springer series in statistics New York. 745 p.

Hoghoghi M., Eagderi S., Shams-Esfandabad B. (2016). Habitat use of Alburnoides namaki, in the Jajroud River (Namak Lake basin, Iran). International Journal of Aquatic Biology, 3(6): 390-397.

Khaefi R., Esmaeili H.R., Geiger M.F., Eagderi S. (2017a). Taxonomic review of the cryptic Barbus lacerta species group with description of a new species (Teleostei: Cyprinidae). FishTaxa, 2(2): 90-115.

Khaefi R., Vatandoust S., Esmaeil H.R. (2017b). Re-description of Barbus miliaris De Filippi, 1863 (Teleostei: Cyprinidae) from the endorheic Namak Lake basin of Iran. FishTaxa, 2(1): 33-42.

Lobo J., Jiménez-valverde A., Real R. (2008). AUC: erratum: predicting species distribution: offering more than simple habitat models. Global Ecology and Biogeography, 17: 145-151.

Logez M., Bady P., Pont D. (2012). Modelling the habitat requirement of riverine fish species at the European scale: sensitivity to temperature and precipitation and associated uncertainty. Ecology of Freshwater Fish, 21(2): 266-282.

Mann R.H.K. (1996). Environmental requirements of European non-salmonid fish in rivers. Hydrobiologia, 323: 223-235.

Margules C.R., Pressey R.L. (2000). Systematic conservation planning. Nature, 405: 243-253.

Martin T.E., Maron J.L. (2012). Climate impacts on bird and plant communities from altered animal-plant interactions. Nature Climate Change, 2: 195-200.

Morid R., Delavar M., Eagderi S., Kumar L. (2016). Assessment of climate change impacts on river hydrology and habitat suitability of Oxynoemacheilus bergianus. Case study: Kordan River, Iran. Hydrobiologia, 771(1): 83-100.

Mostafavi H., Pletterbauer F., Coad B.W., Mahini A.S., Schinegger R., Unfer G., Trautwein C., Schmutz S. (2014). Predicting presence and absence of trout (Salmo trutta) in Iran. Limnologica-Ecology and Management of Inland Waters, 46: 1-8.

Mostafavi H., Schinegger R., Melcher A., Moder K., Mielach C., Schmutz S. (2015). A new fish-based multi-metric assessment index for cyprinid streams in the Iranian Caspian Sea Basin. Limnologica-Ecology and Management of Inland Waters, 51: 37-52.

Mostafavi H., Schinegger R., Pinter K., Kremser H., Bakhtiyari M., Abdoli A., Vatandost S. (2015). Comparison of human pressures and fish assemblages in the salmonid and cyprinid streams of the southern Caspian Sea basin. Iranian Journal of Ichthyology, 2(1): 20-34.

McAllister D.E., Hamilton A.L., Harvey B. (1997). Global freshwater biodiversity: Striving for the integrity of freshwater ecosystems. Sea Wind, 11: 1-140.

Naseka A.M., Bogutskaya N.G. (2009). Fishes of the Caspian Sea: zoogeography and updated check-list. Zoosystematica Rossica, 18(2): 295-317.

Nikmehr N., Eagderi S., Jalili P. (2016). Osteological description of Barbus lacerta Heckel, 1843 (Cyprinidae) from Tigris basin of Iran. Journal of Entomology and Zoology Studies, 4(4): 473-477.

Pearson R.G. (2007). Species’ Distribution Modelling for Conservation Educators and Practitioners. Synthesis. American Museum of Natural History. Available at http://ncep.amnh.org.

Pont D., Hugueny B., Oberdorff T. (2005). Modelling habitat requirement of European fishes: do species have similar responses to local and regional environmental constraints? Canadian Journal of Fisheries and Aquatic Sciences, 62: 163-173.

Pringle C.M. (2003). What is hydrologic connectivity and why is it ecologically important? Hydrological Processes, 17: 2685-2689.

Saadati M.A.G. (1977). Taxonomy and distribution of the freshwater fishes of Iran. Colorado State University. 212 p.

Schmutz S., Kaufmann M., Vogel B., Jungwirth M., Muhar S. (2000). A multi-level concept for fish-based, river-type-specific assessment of ecological integrity. Assessing the Ecological Integrity of Running Waters. Springer. pp:279-289

Sexton J.P., McIntyre P. J., Angert A.L., Rice K.J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40: 415-436.

Tabatabaei S.N., Hashemzadeh Segherloo I., Eagderi S., Zamani Faradonbeh M. (2015). Habitat use of two nemacheilid fish species, Oxynoemacheilus bergianus and Paracobitis sp. in the Kordan River, Iran. Hydrobiologia, 762(1): 183-193.

Thuiller W. (2003). BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9: 1353-1362.

Thuiller W., Richardson D.M., Pyšek P., Midgley G.F., Hughes G.O., Rouget M. (2005). Niche‐based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11(12): 2234-2250.

Thuiller W., Lafourcade B., Engler R., Araújo M.B. (2009). BIOMOD–a platform for ensemble forecasting of species distributions. Ecography, 32(3): 369-373.

Thuiller W., Lafourcade B., Araujo M. (2009a). ModOperating manual for BIOMOD.

Thuiller W, Lafourcade B. (2010). BIOMOD: species/climate modelling functions. R package version: 1.1-5.

Thuiller W., Lafourcade B., Engler R., Araújo M.B. (2009b). BIOMOD–a platform for ensemble forecasting of species distributions. Ecography, 32: 369-373.

Valavi R., Shafizadeh-Moghadam H., Matkan A.A., Shakiba A., Mirbagheri B., Kia S.H. (2018) . Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches. Theoretical and Applied Climatology. https://doi.org/ 10.1007/s00704-018-2625-z.

Vogt J., Colombo R., Paracchini M.L., de Jager A., Soille P. (2003). CMM river and catchment database. EUR 20756 EN, EC-JRC, Inspra. 30 p.

Vogt J., Soille P., de Jaeger A., Rimaviciute E., Mehl W., Foisneau S., Bódis K., Dusart J., Paracchini M., Haastrup P., Bamps C. (2007). A Pan-European river and catchment database. EC-JRC (Report EUR 22920 EN) Luxembourg. 124 p.

Yates K.L., Bouchet P.J., Caley M.J., Mengersen K., Randin C.F., Parnell S., Sequeira A.M.M. (2018). Outstanding challenges in the transferability of ecological models. Trends in Ecology and Evolution, 13 p.

Zamani Faradonbe M., Eagderi S. (2015). Fish assemblages as influenced by environmental factors in Taleghan River (the Caspian Sea basin, Alborz Province, Iran). Caspian Journal of Environmental Sciences, 13(4): 363-371.

Zamani Faradonbe M., Eagderi S., Poorbagher H. (2017). Niche overlap in fish assemblages inferred from canonical correspondence analysis: A case study with the Totkabon River, North of Iran. Su Ürünleri Dergisi, 34(2): 151-156.

Refbacks

  • There are currently no refbacks.