Hemato-immunological, serum metabolite and enzymatic stress response alterations in exposed rainbow trout (Oncorhynchus mykiss) to nanosilver
Downloads
The aim of present study was to investigate the effects of sub-lethal concentrations of silver nanoparticles (AgNP) on hematological parameters, differential tests of white blood cells, serum metabolite parameters, serum enzymes activity and serum ions in rainbow trout, Oncorhynchus mykiss. Healthy rainbow trout, were exposed to sub-lethal concentrations (0, 1.5 and 2.5 ppm) of nanosilver for 14 days. RBC, WBC and Hct levels were significantly (P<0.05) increased in exposed groups. Within the white blood cells, only neutrophils showed a significant increase at 7 and 14 days post exposure (P<0.05). Serum triglyceride, total serum protein, albumin and globulin levels were decreased (P<0.05) in exposed fish, however, cholesterol levels increased in the 2.5 ppm group at 7 days after exposure (P<0.05). Cortisol and glucose increased significantly at 7 and 14 days of exposure in both concentrations of AgNPs (P<0.05). Decreases in serum ions level were observed, although reduction in chloride ions occurred earlier and more severe than other measured parameters (P<0.05). Elevation in serum ALP, LDH, ALT and AST enzymes were observed during the experiment (P<0.05), although SOD and CAT activity were significantly decreased in exposed groups (P<0.05). The results revealed that AgNP can affect the hematological, serum metabolite and enzymatic parameters of O. mykiss, as well as AgNP exposure induce a general oxidative stress response in O. mykiss.
Downloads
Adams S.M., Crumby W.D., Greeley M.S., Ryon M.G., Schilling E.M. (1992). Relationships between physiological and fish population responses in a contaminated stream. Environmental Toxicology and Chemistry, 11: 1549-1557.
Adams S.M., Ryon M. (1994). A comparison of health assessment approaches for evaluating the effects of contaminant-related stress on fish populations. Journal of Aquatic Ecosystem Health, 3: 15-25.
Agrahari S., Pandey K.C., Gopal K. (2007). Biochemical alteration induced by monocrotophos in the blood plasma of fish, Channa punctatus (Bloch). Pesticide Biochemistry and Physiology, 88: 268-272.
Ainsworth A.J. (1992). Fish granulocytes: morphology, distribution, and function. Annual Review of Fish Diseases, 2: 123-148.
Aschberger K., Micheletti C., Sokull-Klí¼ttgen B., Christensen F.M. (2011). Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health"”lessons learned from four case studies. Environment International, 37: 1143-1156.
Asghari S., Johari S.A., Lee J.H., Kim Y.S., Jeon Y.B., Choi H.J., Moon M.C., Yu I.J. (2012). Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. Journal of Nanobiotechnology, 10: 1-14.
Asharani P., Wu Y.L., Gong Z., Valiyaveettil S. (2008). Toxicity of silver nanoparticles in zebrafish models. Nanotechnology, 19: 255102.
Barton B.A. (2002). Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 42: 517-525.
Behra R., Sigg L., Clift M.J., Herzog F., Minghetti M., Johnston B., Petri-Fink A., Rothen-Rutishauser B. (2013). Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. Journal of The Royal Society Interface, 10: 20130396.
Das P.C., Ayyappan S., Jena J., Das B. (2004). Acute toxicity of ammonia and its sub"lethal effects on selected haematological and enzymatic parameters of mrigal, Cirrhinus mrigala (Hamilton). Aquaculture Research, 35: 134-143.
Evans D.H., Piermarini P.M., Choe K.P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews, 85: 97-177.
Farkas J., Christian P., Gallego-Urrea J.A., Roos N., Hassellöv M., Tollefsen K.E., Thomas K.V. (2011). Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquatic Toxicology, 101: 117-125.
Farmen E., Mikkelsen H., Evensen í˜., Einset J., Heier L., Rosseland B., Salbu B., Tollefsen K., Oughton D. (2012). Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles. Aquatic Toxicology, 108: 78-84.
Folmar L., Gardner G., Hickey J., Bonomelli S., Moody T. (1993). Serum chemistry and histopathological evaluations of brown bullheads (Ameiurus nebulosus) from the Buffalo and Niagara Rivers, New York. Archives of Environmental Contamination and Toxicology, 25: 298-303.
Geeraerts C., Belpaire C. 2010. The effects of contaminants in European eel: a review. Ecotoxicology, 19: 239-266.
Goth L. (1991). A simple method for determination of serum catalase activity and revision of reference range. Clinica Chimica Acta, 196: 143-151.
Griffitt R.J., Hyndman K., Denslow N.D., Barber D.S., (2009). Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicological Sciences, 107: 404-415.
Griffitt R.J., Luo J., Gao J., Bonzongo J.C., Barber D.S. (2008). Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry, 27: 1972-1978.
Gulumian M., Borm P., Vallyathan V., Castranova V., Donaldson K., Nelson G., Murray J. (2006). Mechanistically identified suitable biomarkers of exposure, effect, and susceptibility for silicosis and coal-worker's pneumoconiosis: a comprehensive review. Journal of Toxicology and Environmental Health, Part B, 9: 357-395.
Han J., Zhang L., Yang S., Wang J., Tan D. (2014). Detrimental Effects of Metronidazole on Selected Innate Immunological Indicators in Common Carp (Cyprinus carpio L.). Bulletin of Environmental Contamination and Toxicology, 92: 196-201.
Handy R., Depledge M. (1999). Physiological responses: their measurement and use as environmental biomarkers in ecotoxicology. Ecotoxicology, 8: 329-349.
Härdig J., Andersson T., Bengtsson B.-E., Förlin L., Larsson í…. (1988). Long-term effects of bleached kraft mill effluents on red and white blood cell status, ion balance, and vertebral structure in fish. Ecotoxicology and Environmental Safety, 15: 96-106.
Hood E. (2004). Nanotechnology, diving into the unknown. Environmental Health Perspectives, 112: A747-A749.
Johari S., Kalbassi M., Soltani M., Yu I. (2013). Toxicity comparison of colloidal silver nanoparticles in various life stages of rainbow trout (Oncorhynchus mykiss). Iranian Journal of Fisheries Sciences, 12: 76-95.
Karthikeyeni, S., Siva Vijayakumar, T., Vasanth, S., Arul Ganesh, M.M., Subramanian, P., 2013. Biosynthesis of Iron oxide nanoparticles and its haematological effects on fresh water fish Oreochromis mossambicus. Journal of Academia and Industrial Research, 10: 645-649.
Katuli K.K., Massarsky A., Hadadi A., Pourmehran Z., (2014). Silver nanoparticles inhibit the gill Na+/K+-ATPase and erythrocyte AChE activities and induce the stress response in adult zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 106: 173-180.
Kavitha C., Malarvizhi A., Senthil Kumaran S., Ramesh M. (2010). Toxicological effects of arsenate exposure on hematological, biochemical and liver transaminases activity in an Indian major carp,Catla catla. Food and Chemical Toxicology, 48: 2848-2854.
Khalaf-Allah S. (1999). Effect of pesticide water pollution on some haematological, biochemical and immunological parameters in Tilapia nilotica fish. DTW. Deutsche tierarztliche Wochenschrift, 106: 67-71.
Kim S.-G., Kang J.-C. (2004). Effect of dietary copper exposure on accumulation, growth and hematological parameters of the juvenile rockfish,Sebastes schlegeli. Marine Environmental Research, 58: 65-82.
Kolayli S., Keha E. (1999). A comparative study of antioxidant enzyme activities in freshwater and seawater"adapted rainbow trout. Journal of Biochemical and Molecular Toxicology, 13: 334-337.
Lapresta-Fernández A., Fernández A., Blasco J. (2012). Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms. TrAC Trends in Analytical Chemistry, 32: 40-59.
Lemaire P., Drai P., Mathieu A., Lemaire S., Carriere S., Giudicelli J., Lafaurie M. (1991). Changes with different diets in plasma enzymes (GOT, GPT, LDH, ALP) and plasma lipids (cholesterol, triglycerides) of sea-bass (Dicentrarchus labrax). Aquaculture, 93: 63-75.
Li H., Zhou Q., Wu Y., Fu J., Wang T., Jiang G. (2009). Effects of waterborne nano-iron on medaka (Oryzias latipes): Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology and Environmental Safety, 72: 684-692.
Malina D., Sobczak-Kupiec A., Wzorek Z. (2010). Risk assessment for silver nanoparticles in environment. Mineralia Slovaca, 42: 337-341.
Marklund S., Marklund G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47: 469-474.
Massarsky A., Dupuis L., Taylor J., Eisa-Beygi S., Strek L., Trudeau V.L., Moon T.W. (2013). Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere, 92: 59-66.
Moaddab S., Ahari H., Shahbazzadeh D., Motallebi A.A., Anvar A.A., Rahman-Nya J., Shokrgozar M.R. (2011). Toxicity study of nanosilver (Nanocid) on osteoblast cancer cell line. International Nano Letters, 1: 11-16.
Moore M. (2006). Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment International, 32: 967-976.
Neumann N.F., Stafford J.L., Barreda D., Ainsworth A.J., Belosevic M. (2001). Antimicrobial mechanisms of fish phagocytes and their role in host defense. Developmental and Comparative Immunology, 25:807-825.
Oluah N. (1999). Plasma aspartate aminotransferase activity in the catfish Clarias albopunctatus exposed to sublethal zinc and mercury. Bulletin of Environmental Contamination and Toxicology, 63: 343-349.
í–ner M., Atli G., Canli M. (2008). Changes in serum biochemical parameters of freshwater fish Oreochromis niloticus following prolonged metal (Ag, Cd, Cr, Cu, Zn) exposures. Environmental Toxicology and Chemistry, 27: 360-366.
Piao M.J., Kang K.A., Lee I.K., Kim H.S., Kim S., Choi J.Y., Choi J., Hyun J.W. (2011). Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicology Letters, 201: 92-100.
Rajyasree M., Neeraja P. (1989). Aspartate and alanine aminotransferase activities in fish tissue subcellular fractionation on exposure to ambient urea. Indian Journal of Fisheries, 36: 88-91.
Rao J.V. (2006a). Biochemical alterations in euryhaline fish, Oreochromis mossambicus exposed to sub-lethal concentrations of an organophosphorus insecticide, monocrotophos. Chemosphere, 65: 1814-1820.
Rao J.V. (2006b). Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish, Oreochromis mossambicus. Pesticide Biochemistry and Physiology, 86: 78-84.
Sarder M.R.I., Thompson K.D., Penman D.J., McAndrew B.J. (2001). Immune responses of Nile tilapia (Oreochromis niloticus L.) clones: I. Non-specific responses. Developmental and Comparative Immunology, 25: 37-46.
Scown T., Van Aerle R., Tyler C. (2010a). Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? Critical Reviews in Toxicology, 40: 653-670.
Scown T.M., Santos E.M., Johnston B.D., Gaiser B., Baalousha M., Mitov S., Lead J.R., Stone V., Fernandes T.F., Jepson M. (2010b). Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicological Sciences, 115: 521-534.
Shahbazzadeh D., Ahari H., Motalebi A., Anvar A., Moaddab S., Asadi T., Shokrgozar M., Rahman-Nya J. (2011). In vitro effect of nanosilver toxicity on fibroblast and mesenchymal stem cell lines. Iranian Journal of Fisheries Sciences, 10: 487-496.
Shaluei F., Hedayati A., Jahanbakhshi A., Baghfalaki M. (2012). Effects of nanometer-sized silver materials on survival response of Caspian roach (Rutilus rutilus caspicus). Toxicology and industrial health, 0748233712457445.
Shahbazzadeh D., Ahari H., Rahimi N.M., Dastmalchi F., Soltani M., Fotovat M., Rahmannya J., Khorasani N. (2009). The effects of nanosilver (Nanocid®) on survival percentage of rainbow trout (Oncorhynchus mykiss). Pakistan Journal of Nutrition, 8: 1178-1179.
Shahsavani D., Mohri M., Kanani H.G. (2010). Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish Physiology and Biochemistry, 36: 39-43.
Shaluei F., Hedayati A., Jahanbakhshi A., Baghfalaki M. (2012). Effects of nanometer-sized silver materials on survival response of Caspian roach (Rutilus rutilus caspicus). Toxicology and Industrial Health, 0748233712457445.
Shaluei F., Hedayati A., Jahanbakhshi A., Kolangi H., Fotovat M. (2013). Effect of subacute exposure to silver nanoparticle on some hematological and plasma biochemical indices in silver carp (Hypophthalmichthys molitrix). Human and Experimental Toxicology, 32: 1270-1277.
Shaw B.J., Al-Bairuty G., Handy R.D. (2012). Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout,(Oncorhynchus mykiss): Physiology and accumulation. Aquatic Toxicology, 116: 90-101.
Stanic B., Andric N., Zoric S., Grubor-Lajsic G., Kovacevic R. (2006). Assessing pollution in the Danube River near Novi Sad (Serbia) using several biomarkers in sterlet (Acipenser ruthenus L.). Ecotoxicology and Environmental Safety, 65: 395-402.
Vinodhini R., Narayanan M. (2009). The Impact of toxic heavy metals on the hematological parameters in common Carp (Cyprinus carpio L.). Journal of Environmental Health Science and Engineering, 6: 23-28.
Weinreb E.L. (1958). Studies on the histology and histopathology of the rainbow trout, Salmo gairdneri irideus. I. Hematology: Under normal and experimental conditions of inflammation. Zoologica, 43: 145-154.
White A., Fletcher T.C. (1986). Serum cortisol, glucose and lipids in plaice (Pleuronectes platessa L.) exposed to starvation and aquarium stress. Comparative Biochemistry and Physiology, 84: 649-653.
Wu Y., Zhou Q. (2012). Dose-and time-related changes in aerobic metabolism, chorionic disruption, and oxidative stress in embryonic medaka (Oryzias latipes): Underlying mechanisms for silver nanoparticle developmental toxicity. Aquatic Toxicology, 124: 238-246.
Wu Y., Zhou Q. (2013). Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environmental Toxicology and Chemistry, 32: 165-173.
Yarahmadi P., Miandare H.K., Hoseinifar S.H., Gheysvandi N., Akbarzadeh A. (2015). The effects of stocking density on hemato-immunological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Aquaculture International, 23: 55-63.
Yeo M., Kang M. (2008). Effects of nanometer sized silver materials on biological toxicity during zebrafish embryogenesis. Bulletin-Korean Chemical Society, 29: 1179.
Zhang W., Liang G., Wu L., Tuo X., Wang W., Chen J., Xie P. (2013). Why mammals more susceptible to the hepatotoxic microcystins than fish: evidences from plasma and albumin protein binding through equilibrium dialysis. Ecotoxicology, 22: 1012-1019.