Rodlet cells changes in Oreochromis niloticus in response to organophosphate pesticide and their relevance as stress biomarker in teleost fishes

Natalia de Souza Araujo, Joao Carlos Shimada Borges


Rodlet cells are frequently found in teleost fishes and although their role in organisms is not completely understood. The occurrence of these cells are related to stress and may undergo changes in contaminated environments, thereby allowing their use as biomarkers. This hypothesis is tested in the present study. Thirty specimens of Oreochromis niloticus were divided into three groups, two groups were exposed to organophosphate pesticide methyl parathion at nominal concentrations of 4 mgl-1 and 8 mgl-1 and one group was kept as control. After ten days, the gills were removed for microscopic study and the number and area of the rodlet cells were analyzed and compared with a well-established method of assessing histological damages in fishes. No significant differences were found in the area of the cells, but there were significant differences in the number of rodlet cells among examined concentrations. The present study provides evidence for the use of this new biomarker in teleost fishes and discusses some of the potential confounding factors of this approach.


Organophosphate, Biomarkers, Nile tilapia, Methyl parathion.

Full Text:



Agnèse J.F., Adépo-Gourène B., Abban E.F., Fermon Y. (1997). Genetic differentiation among natural populations of the Nile Tilápia Oreochromis niloticus (Teleostei, Cichlidae). Heredity, 79: 88-96.

Amorim L.C.A. (2003). Os biomarcadores e sua aplicação na avaliação da exposição aos agentes químicos ambientais. Revista Brasileira de Epidemiologia, 6(2): 158-170.

Araújo T.M.R., Campos M.N.N., Canela M.C. (2006). Avaliação dos Fatores que Influenciam a Degradação do Paration Metílico em Ambientes Aquáticos Naturais. 29ª Reunião Anual da Sociedade Brasileira de Química. Águas de Lindóia - SP.

Barber D.L., Mills Westermann J.E. (1986). The rodlet cell of Semotilus atromaculatus and Catostomus commersoni (Teleostei): studies on its identity using histochemistry and DNase I - gold, RNase A - gold, and S1 nuclease – gold labeling techniques. Canadian Journal of Zoology, 64(4): 805-813.

Bielek E. (2005). Development of the endoplasmic reticulum in the rodlet cell of two teleost species. Anatomical Record, Part A, 283(1): 239-249.

Borges J.C.S., Vivai A.B.B.S., Branco P.C., Oliveira M.S., Silva J.R.M.C. (2013). Effects of trophic levels (chlorophyll and phosphorous content) in three different water bodies (urban lake, reservoir and aquaculture facility) on gill morphology of Nile tilapia (Oreochromis niloticus). Journal of Applied Ichthyology, 29: 573-578.

Cruz C., Machado-Neto J.G., Menezes M.L. (2004). Toxicidade aguda do inseticida paration metílico e do biopesticida azadiractina de folhas de neem (Azadirachta Indica) para alevino e juvenil de Pacu (Piaractus mesopotamicus). Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, 14: 93-102.

DePasquale J.A. (2014). Tyrosine phosphatase inhibitor triggers rodlet cell discharge in sunfish scale epidermis cultutures. Acta Zoológica, 1-11.

Dezfuli B.S., Giari L., Konecny R., Jaeger P., Manera M. (2003a). Immunohistochemistry, ultrastructure and pathology of gills of Abramis brama from Lake Mondsee, Austria, infected with Ergasilus sieboldi (Copepoda). Diseases of aquatic organisms, 53: 257-262.

Dezfuli B.S., Giari L., Simoni E., Palazzi D., Manera M. (2003b). Alteration of rodlet cells in chub caused by the herbicide Stam® M-4 (Propanil). Journal of Fish Biology, 63: 232-239.

Dezfuli B.S., Simoni E., Giari L., Manera M. (2006). Effects of experimental terbuthylazine exposure on the cells of Dicentrarchus labrax (L.). Chemosphere, 64: 1684-1694.

Fishelson L., Russell B., Golani D., Goren M. (2011). Rodlet cells in the alimentary tract of three genera of lizardfishes (Synodontidae, Aulopiformes): more on these enigmatic “gate-guards” of fishes. Cybium, 35(2): 121-129.

Giari L., Simoni E., Manera M., Dezfuli B.S. (2008). Histo-cytological responses of Dicentrarchus labrax (L.) following Mercury exposure. Ecotoxicology and Environmental Safety, 70: 400-410.

Hayat M.A. (1981). Fixation for Electron Microscopy, Academic Press, Inc., New York. pp: 201-206.

Kramer C.R., Kramer A.J., Konovalov A. (2005). Rodlet cell distribution in the gall bladder epithelium of Fundulus heteroclitus. Journal of Fish Biology, 67: 555-560.

Laurà R., Germanà G.P., Levanti M.B., Guerrera M.C., Radaelli G., De Carlos F., Suárez A.A., Ciriaco E., Germanà A. (2012). Rodlet cells development in the intestine of sea bass (Dicentrarchus labrax). Microscopy Research and Technique, 75: 1321-1328.

Lennon R.E., Walker C.R. (1964). Laboratories and methods for screening fish control chemicals, in: Investigations in Fish Control 1. Burerau of Sport Fisheries and Wildlife Service Circular 185. Washington D.C.: Fish and Wildlife Service, U.S. Department of the Interior.

Livingstone D.R. (1993). Biotechnology and pollution monitoring: use of molecular biomarker in the aquatic environment. Journal of Chemical Technology and Biotechnology. 57: 195-211.

Machado M.R. (1999). Uso de brânquias de peixes como indicadores de qualidade das águas. UNOPAR Científica, Ciência e Biologia da Saúde, Londrina, 1(1): 63-76.

Mallat J. (1985). Fish structural changes induced by toxicants and others irritants: a statistical review. Canadian Journal of Fisheries and Aquatic Sciences, 42: 631-48.

Manera M., Dezfuli B.S. (2004). Rodlet cells in teleosts: a new insight into their nature and functions. Journal of Fish Biology, 65: 597-619.

Matisz C.E., Goater C.P., Bray D. (2010). Density and maturation of rodlet cells in brain tissue of fathead minnows (Pimephales promelas) exposed to trematode cercariae. International Journal for Parasitology, 40: 307-312.

Mazon A.F., Huising M.O., Taverne-Thiele A.J., Bastiaans J., Kemenade B.M.L.V. (2007). The first appearance of Rodlet cells in carp (Cyprinus carpio L.) ontogeny and their possible roles during stress and parasite infection. Fish Shellfish Immunology, 22: 27-37.

Mcdowell E.M., Trump B.F. (1976). Histologic fixatives suitable for diagnostic light and electron microscopy. Archives of Pathology and Laboratory Medicine, 100: 405-414.

Plehn M. (1906). Über eigentmüliche Drüsenzellen im Gefä & system und in aderen Organen bei Fischen. Anatomische Anzeiger, 28: 192-203.

Perry S.F. (1997). The Chloride cell: structure and function in the gill of freshwater fishes. Annual Review of Physiology, 59: 325-47.

Poleksic V., Mitrovic-Tutundzic V. (1994). Fish gills as a monitor of sublethal and chronic effects of pollution. In: R. Müller, R. Lloyd, (Eds.). Sublethal and chronic effects of polluttants on freshwater fish. University Press, Cambridge. pp: 339-352.

Poltronieri C., Laurà R., Bertotto D., Negrato E., Simontacchi C., Guerrera M.C., Radaelli G. (2009). Effects of exposure to overcrowding on rodlet cells of the teleost fish Dicentrarchus labrax (L.). Veterinary Research Communications, 33: 619-629.

R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. [Online] Available at:

Rebok K., Kostov V., Rocha E., Jordanova M. (2010). Can rodlet cells changes in barbell (Barbus peloponnesius) from the river Bregalnica be used as biomarkers of environmental contamination?. Balwois, 1-7.

Reite O.B., Evensen Ø. (2006). Inflammatory cells of teleostean fish: A review focusing on mast cells/eosinophilic granule cells and rodlet cells. Fish Shellfish Immun, 20: 192-208.

Ruckart P.Z., Kakolewski K., Bove F.J., Kaye W.E. (2004). Long-term neurobehavioral health effects of methyl parathion exposure in children in Mississippi and Ohio. Environmental Health Perspectives, 112(1): 46-51.

Rüdiger H.W. (1999). Biomonitoring in occupational medicine. In: H. Marquart, S.G. Schäfer, R. McClellan, F. Welsch (Eds.).Toxicology, Academic Press, San Diego. pp: 1027-1397.

Schmachtenberg O. (2007). Epithelial sentinels or protozoan parasites? Studies on isolated rodlet cells on the 100th anniversary of an enigma. Revista Chilena de Historia Natural, 80: 55-62.

Schultz A.G., Jones P.L., Toop T. (2014). Rodlet cells in Murray cod, Maccullochella peelii peelii (Mitchell), affected with chronic ulcerative dermatopathy. Journal of Fish Diseases, 37: 219-228.

Sfacteria A., Brines M., Blank U. (2014). The mast cell plays a central role in the immune system of teleost fish. Molecular immunology, 63(1): 3-8.

Silphaduang U., Colorni A., Noga E.J. (2006). Evidence for widespread distribution of piscidin antimicrobial peptides in teleost fish. Diseases of Aquatic Organisms, 72: 241-252.

Silva J.R.M.C., Cooper E.L., Sinhorini I.L., Borges J.C.S., Jensch-Junior B.E., Porto-Neto L.R., Hernandez-Blazquez B.E., Vellutini B.C., Pressinotti L.N., Costa-Pinto B.C. (2005). Microscopical study of experimental wound healing in cabeçuda Notothenia coriiceps at 0°C. Cell Tissue Research, 321(3): 401-410.

World Health Organization (1993). International Programme on Chemical Safety (IPCS) – Environmental Health Criteria 155: Biomarkers and risk assessment: concepts and principles. Geneva.


  • There are currently no refbacks.