Cloning and characterization of promoters of vascular specific genes in Zebrafish

Harinder Vishwakarma, Jayanand Manjhi, Anvesha Sinha


Gene promoters located at the 5′ end of genes are instrumental in regulating the gene expression in a ubiquitous or tissue specific manner. The objective of the study was to identify, clone and characterize promoters involved in gene expression in specific tissues such as the blood and blood vessel of Zebrafish. Three genes, known to express in the blood and blood vessel lineage in Zebrafish, were selected viz.  Pak2a, Rac1 and Cdc42. Approximately 800 bp of putative promoter region of Pak2a and 826 bp putative promoter region of cdc42 were cloned into plasmid vectors. This putative promoter did not show any expression in Zebrafish embryos. However, approximately 716 bp of putative promoter region of Rac1 showed Red Fluorescent Protein expression. While study Cmlc2 was used as a positive control.


Gene Expression, Promoters, Red Fluorescent Protein, Zebrafish.

Full Text:

PDF Supplementary File


Arnaout R., Ferrer T., Huisken J., Spitzer K., Stainier D.Y.R., Tristani-Firouzi M., Chi N.C. (2007). Zebrafish model for human long QT syndrome. Proceedings of National Academy of Science, 104(27): 11316-11321.

Bai Q., Garver J.A., Hukriede N.A., Burton E.A. (2007). Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acid Research, 35(19): 6501-6516.

Buchner D.A., Su F., Yamaoka J.S., Kamei M., Shavit J.A., Barthel L.K., McGee B., Amigo J.D., Seongcheol K., Hanosh A.W., Jagadeeswaran P., Goldman D., Lawson N.D., Raymond P.A., Weinstein B.M., Ginsburg D., Lyons S.E. (2007). pak2a mutations cause cerebral hemorrhage in redhead zebarfish. Proceedings of National Academy of Science, 104(35): 13996-140001.

Chávz M.N., Aedo G., Fierro F.A., Allende M.L., Egaña J.T. (2016). Zebrafish as an emerging model organism to study angiogenesis in development and regeneration. Frontiers in Physiology, 7: 56.

Chen Z., Huang W., Dahme T., Rottbauer W., Ackerman M.J., Xu X. (2008). Depletion of zebrafish essential and regulatory myosin light chains reduces cardiac function through distinct mechanisms. Cardiovascular Research, 79: 97-108.

Chourrout D. (1986). Techniques of chromosome manipulation in rainbow trout: a new evaluation with karyology. Theoretical and Applied Genetics, 72: 627-632.

Dooley K., Zon L.I. (2000). Zebrafish a model system for the study of human disease. Current Opinion in Genetics and Development, 10.3: 252-256.

Dumont C., Tadrzak A.C., Ruf S., Boer J., Williams A., Turner M., Kioussis D., Tybulewicz V.L.J. (2009). Rac GTPases play critical role in early T-cell development. Blood, 113: 17.

Dunham R.A., Eash J., Askins J., Townes T.M. (1987). Transfer of the metallothione in human growth hormone fusion gene into channel catfish. Transactions of the American Fisheries Society, 116: 87-91.

Fire A. (1986). Integrative transformation of C. elegans. The EMBO Journal, 5: 2673-2680.

Flytzanis C.N., Mcmahon A.P., Hough-Evans B.R., Katula K.S., Britten R.J., Davidson E.H. (1985). Persistence and integration of cloned DNA in post-embryonic sea urchins. Developmental Biology, 108: 431-442.

Hsu K., Traver D., Kutok J.L., Hagen A., Liu T., Paw B. H., Rhodes J., Berman J.N., Zon L.I., Kanki J.P., Look A.T. (2004). The pu.1 promoter drives myeloid gene expression in zebrafish. Blood, 104: 1291-1297.

Huang C.J., Tu C., Hsiao C., Hsieh F., Tsai H. (2003). Germline transmission of a myocardium-specific GFP transgene reveals critical myosin light chain 2 promoter of zebrafish. Developmental Dynamics, 228: 30-40.

Jaenisch R. (1988). Transgenic animals. Science, 240: 1468-1474.

Kawakami K. (2007). Tol2: a versatile gene transfer vector in vertebrates. Genome Biology, 8(Suppl. 1): S7.

Leskow F.C., Holloway B.A., Wang H., Mullins M.C., Kazaneitz M.C. (2006). The zebrafish homologue of mammalian chimerin Rac-GAPs is implicated in epiboly progression during development. Cell Biology, 103(14): 5373-5378.

Liu J., Fraser S.D., Faloon P.W., Rollins E.L., Berg J.V., Subota O.S., Laliberte A.L., Chen J.N., Serluca F.C., Childs S.J. (2007). A B-Pix-Pak2a signaling pathway regulates cerebral vascular stability in zebrafish. Proceedings of National Academy of Science, 13990-13995.

Meng A., Tang H., Ong B.A., Farrell M.J., Lin S. (1997). Promoter analysis in living zebrafish embryos identifies a cis-acting motif required for neuronal expression of GATA-2. Developmental Biology, 94: 6267-6272.

Mingjun C., Jianchyi C., Jyhyih C., Hongyi G., Litzy L., Tzouchi Z., Jenlieh W., Chinming K. (2008). Isolation and characterization of the zebrafish Danio rerio insulin-like growth factor binding protein-3 promoter region. Fisheries Science, 74: 153-166.

Park H., Kim C., Bae Y., Yeo S., Kim S., Hong S., Shin J., Yoo K., Hibi M., Hirano T., Miki N., Chitnis A.B., Huh T. (2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Developmental Biology, 227: 279-293.

Rottbauer W., Wessels G., Dahme T., Just S., Trano N., Hassel D., Burns C.G., Katus H.A., Fishman M.C. (2006). Cardiac myosin light chain-2 a novel essential component of thick-myofilament assembly and contractility of the heart. Circulation Research, 99: 323-33.

Rubin G.M. (1988). Drosophila melanogaster as an experimental organism. Science, 240: 1453-1459.

Stuart G.W., Vielkind J.R., McMurray J.V., Westerfield M. (1990). Stable lines of transgenic zebrafish exhibit reproducible patterns of transgene expression. Development, 109: 577-584.

Vidal E.S., Meijer E.H., Cheng H., Spaink H.P. (2005). Genomic annotation and expression analysis of zebrafish Rho small GTPases family during development and bacterial infection. Genomics, 86(1): 25-37.

Zhu H., Traver D., Davidson A.J., Dibiase A., Thisse C., Thisse B., Nimer S., Zon L.I. (2005). Regulation of the lmo2 promoter during hematopoietic and vascular development. Developmental Biology, 281: 256-259.


  • There are currently no refbacks.