Protective effects of prebiotic in zebrafish, Danio rerio, under experimental exposure to Chlorpyrifos

Samira Yousefi, Seyed Hossein Hoseinifar


The current study estimated the immunotoxicological effects of the herbicide chlorpyrifos at sub-lethal concentration and the potential ameliorative effects of galactooligosaccharide (GOS) in Danio rerio. Fish was sampled after a 56-days feeding with GOS and then exposed to 15 mg/l chlorpyrifos for 7-days to assess the non-specific immune responses (total protein, immunoglobulin and ALP activity). The results revealed that feeding zebrafish with 1% dietary GOS increased total protein levels (P<0.05), but no significant effect was noticed between groups fed 0.5 and 2% GOS and control (P>0.05). There were significant difference between total immunoglobulin levels 1% and control group (P<0.05). Furthermore, in case of ALP activity no significant alteration was noticed between GOS fed fish and control (P>0.05). The present findings revealed that dietary supplementation with GOS could be useful for modulation of the immunity in response to chlorpyrifos exposure, thereby presenting a promising feed additive in aquaculture.


Chlorpyrfos, Prebiotic, Immunoglobulin, Immune response.

Full Text:



Abdelkhalek N.K.M., Ghazy E.M., Abdel-Daim M.M. (2015). Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: impact on lipid peroxidation and oxidative stress. Environmental Science and Pollution Research, 22: 3023-31.

Aslam F., Khan A., Khan M.Z., Sharaf S., Gul S.T., Saleemi M.K. (2010). Toxico-pathological changes induced by cypermethrin in broiler chicks: their attenuation with Vitamin E and selenium. Experimental and Toxicologic Pathology, 62(4): 441-50

Bertolote J.M. (2006). Deaths from pesticide poisoning: a global response. The British Journal of Psychiatry, 189: 201-203.

Brookes P.S. (2004). Calcium, ATP, and ROS: a mitochondrial lovehate triangle. American Journal of Physiology-Cell Physiology, 287: C817-C833.

Burr G., Hume M., Ricke S., Nisbet D., Gatlin D. (2010). In vitro and in vivo evaluation of the prebiotics GroBiotic a, inulin, mannanoligosaccharide, and galactooligosaccharide on the digestive microbiota and performance of hybrid striped bass (Morone chrysops Morone saxatilis). Microbial Ecology, 59: 187-98.

Carnevali O., DeVivo L., Sulpizio R., Gioacchini G., Olivotto I., Silvi S., Cresci A. (2006). Growth improvement by probiotic in European sea bass juveniles (Dicentrarchus labrax, L.), with particular attention to IGF-1, myostatin and cortisol gene expression. Aquaculture, 258: 430-438.

Carvalho E.S., Gomes L.C., Brandao F.R., Crescencio R, Chagas E.C., Anselmo A.A.S. (2009). The use of probiotic Efinol during transportation of tambaqui (Colossoma macropomum). Arquivo Brasilerio de Medicina Veterinaria e Zootecnia, 61: 1322-1327.

Crawford A.D., Esguerra C.V., de Witte P.A. (2008). Fishing for drugs from nature: zebrafish as a technology platform for natural product discovery. Journal of Planta Medica, 74(06): 624-632.

Gomes L.C., Brinn P.R., Marcon J.L., Dantas L.A, Brandao F.R., De Abreu J.S., Lemos P.E.M., McComb D.M., Baldisserotto B. (2009). Benefits of using the probiotic Efinol during transportation of cardinal tetra, Paracheirodon axelrodi (Schultz), in the Amazon. Aquaculture Research, 40: 157-165.

Grisdale-Helland B., Helland S.J., Gatlin III D.M. (2008). The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture, 283: 163-7.

Guerreiro I., Couto A., Machado M., Castro C., Pousao-Ferreira P., Oliva-Teles A. (2015). Prebiotics effect on immune and hepatic oxidative status and gut morphology of white sea bream (Diplodus sargus), Fish and Shellfish Immunology, 50: 168-174.

Holbech H., Andersen L., Petersen G.I., Korsgaard B., Pedersen K.L., Bjerregaard P. (2001). Development of an ELISA for vitellogenin in whole body homogenate of zebrafish (Danio rerio). Journal of Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 130(1): 119-131.

Hoseinifar S.H., Esteban M.A, Cuesta A., Sun Y.Z. (2015). Prebiotics and fish immune response: a review of current knowledge and future perspectives. Review in Fisheries Science and Aquaculture, 23: 315-328.

Hoseinifar S.H., Esteban M.Á., Cuesta A., Sun Y.Z. (2015). Prebiotics and fish immune response: a review of current knowledge and future perspectives. Journal of Reviews in Fisheries Science and Aquaculture, 23(4): 315-328.

Hoseinifar S.H., Roosta Z., Hajimoradloo A., Vakili F. (2015). The effects of Lactobacillus acidophilus as feed supplement on skin mucosal immune parameters, intestinal microbiota, stress resistance and growth performance of black swordtail (Xiphophorus helleri), Fish & Shellfish Immunology, 42: 533-538.

Hoseinifar S.H., Mirvaghefi A., Amoozegar M.A., Sharifian M., Esteban M.Á. (2015). Modulation of innate immune response, mucosal parameters and disease resistance in rainbow trout (Oncorhynchus mykiss) upon synbiotic feeding. Fish and Shellfish Immunology, 45(1): 27-32.

Jayantha Rao K., Azhar Jr B., Ramamurthy K. (1984). Effect of a systemic pesticide phosphamidon on some aspects of freshwater fish, Tilapia mossambica, Indian Journal of Environmental Health, 26: 60-64.

Magnadottir B. (2006). Innate immunity of fish (overview). Fish and Shellfish Immunology, 20(2): 137-51.

Miandare H.K., Farvardin S., Shabani A., Hoseinifar S.H., Ramezanpour S.S. (2016). The effects of galactooligosaccharide on systemic and mucosal immune response, growth performance and appetite related gene transcript in goldfish (Carassius auratus gibelio). Fish and Shellfish Immunology, 55: 479-483.

Köllner B., Wasserrab B., Kotterba G., Fischer U. (2002). Evaluation of immune functions of rainbow trout (Oncorhynchus mykiss) how can environmental influences be detected? Toxicology Letter, 131: 83-95.

Maslowski K.M., Mackay C.R. (2010). Diet, gut microbiota and immune responses. Nature Immunology, 12: 5-9.

Moraes B.S., Loro V.L., Glusczak L. (2007). Effects of four rice herbicides on some metabolic and toxicology parameters of teleost fish (Leporinus obtusidens). Chemosphere, 68: 1597-601.

Nayak S.K. (2010). Fish Probiotics and immunity: a fish perspective. Fish and Shellfish Immunology, 29(1): 2-14.

Roosta Z., Hajimoradloo A., Ghorbani A., Hoseinifar S.H. (2014). The effects of dietary vitamin C on mucosal immune responses and growth performance in Caspian roach (Rutilus rutilus caspicus) fry. Fish Physiology and Biochemistry, 40: 1601-1607.

Rudneva I.I. (2007). Agricultural aspects of aquatic environmental toxicology (a review of literature). Gigiena i sanitariia, (2): 24-28.

Rusyniak D.E., Nanagas K.A. (2004). Organophosphate poisoning. Seminars in Neurology, 24: 197-204.

Sahar E., Magd E.L., Abou M.E.S. Laila A., Shoukry A. (2011). Pyrethroid toxic effects on some hormonal profile and biochemical markers among workers in pyrethroid insecticides company. Life Science Journal, 8(1): 311-322.

Sako T., Matsumoto K., Tanaka R. (1999). Recent progress on research and applications of non-digestible galactooligosaccharides. International Dairy Journal, 9: 69-80.

Shephard K.L. (1994). Functions for fish mucus. Reviews in Fish Biology and Fisheries, 4: 401-29.

Simsek N., Karadeniz A., Kalkan Y., Keles O.N., Unal B. (2009). Spirulina platensis feeding inhibited the anemia- and leucopenia-induced lead and cadmium in rats. Journal Hazardous Materials, 164: 1304-9.

Slaninova A., Smutna M., Modra H., Svobodova Z. (2001). review: oxidative stress in fish induced by pesticide. Neuroendocrinology Endocrinology Letters, 30(1): 2-12.

Song S.K., Beck B.R., Kim D., Park J., Kim J., Kim H.D. Ringø E. (2014). Prebiotics as immunostimulants in aquaculture: a review. Fish & Shellfish Immunology, 40(1): 40-48.

Taoka Y., Maeda H., Jo J.Y., Jeon M.N., Bai S.C., Lee W.J., Yuge K., Koshio S. (2006). Growth, stress tolerance and non-specific immune response of Japanese flounder, Paralichthys olivaceus to probiotics in a closed recirculating system. Fisheries Science, 72: 310-321.

Taoka Y., Maeda H., Jo J.Y., Jeon M.N., Bai S.C., Lee W.J, Yuge K., Koshio S. (2006). Growth, stress tolerance and non-specific immune response of Japanese flounder, Paralichthys olivaceus to probiotics in a closed recirculating system. Fisheries Science, 72: 310-321.

Tripathi G., Harsh S. (2002). Fenvalerate-induced macromolecular changes in the catfish, Clarias batrachus. Journal of Environmental Biology, 23: 143-146.

Van Hai N., Fotedar R. (2009). Comparison of the effects of the prebiotics (Bio-Mos and b-1, 3-D-glucan) and the customised probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquaculture, 289: 310-6.

Venkateswara Rao J., Parvati K., Kavitha P., Jakka N.M., Pallela R. (2005). Effect of chlorpyrifos and monocrotophos on locomotor behaviour and acetylcholinesterase activity of subterranean termites, Odontotermes obesus. Pesticide Management Science, 61: 417-421.

Watzke J., Schirmer K., Scholz S. (2007). Bacterial lipopolysaccharides induce genes involved in the innate immune response in embryos of the zebrafish (Danio rerio). Fish and Shellfish Immunology, 23: 901-5.

Yang S.T., Silva E.M. (1995). Novel products and new technologies for use of a familiar carbohydrate, milk lactose. Journal of Dairy Science, 78: 2541-62.

Zhou Q.C., Buentello J.A., Gatlin III D.M. (2010). Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus). Aquaculture, 309: 253-7.


  • There are currently no refbacks.