Using kriging and co-kriging to predict distributional areas of Kilka species (Clupeonella spp.) in the southern Caspian Sea

Kaveh Amiri, Nader Shabanipour, Soheil Eagderi


Understanding ecological and anthropogenic drivers of fish population dynamics and achieving a sustainable yield requires detailed studies on habitat selection and spatial distribution. The objective of this study was to predict spatial density and distribution of kilka species in the southern Caspian sea in relation to satellite-derived sea surface temperature, chlorophyll-a concentration, turbidity and water depths  using ordinary kriging and co-kriging  geostatistical methods and introduction an appropriate potential fishing area according to the present fishing points. Three hundred and fifty fishing surveys were done in two main kilka fishing ports in the southern Caspian Sea (Anzali and Babolsar ports) from 2015 to 2016. The Geostatistical analysis showed that the co-kriging spatial interpolation method provided the best prediction of fish abundance when chlorophyll-a content was included in model.


Modeling, Predict catch abundance, Kilka, Caspian Sea.

Full Text:



Aidooa E.N., Mueller U., Goovaerts P., Hyndes G.A. (2015). Evaluation of geostatistical estimators and their applicability to characterise the spatial patterns of recreational fishing catch rates. Fisheries Research, 168: 20-32.

Amante C., Eakins B.W. (2009). ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis, NOAA Technical Memorandum NESDIS NGDC-24. R.S. Dwivedi, D. Vijayan (Eds.). Romote Sensing Applications; National Remote Sensing Centre. pp: 19.

Amiri K., Bani A., Abdolmaleki S., Alijanpour N. (2012). Study on reproductive investment of common kilka (Clupeonella cultriventris) in the south part of the Caspian Sea (Bandar Anzali). Iranian Journal of Biology, 4: 454-461.

Bertrand A., Josse E., Bach P., Gros P., Dagorn L. (2002). Hydrological and trophic characteristics of tuna habitat: Consequences on tuna distribution and long line catchability. Canadian Journal of Fisheries & Aquatic Science 59: 1002-1013.

CEP (2002). Transboundary Diagnostic Analysis for the Caspian Sea; Baku, Azerbaijan. 36 p.

Chen Z., Hu C., Muller-Karger F. (2007). Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sensing of Environment, 109: 207-220.

David M. (1977). Geostatistical Ore Reserve Estimation, Elsevier Scientific Publishing Company, Amsterdam. 364 p.

Fazli H., Zhang C.I., Hay D.E., Lee C.W. (2009). Stock assessment and management implications of anchovy kilka (Clupeonella engrauliformis) in Iranian waters of the Caspian Sea. Fisheries Research, 100: 103-108.

Freon P., Cury L., Shannon L., Roy C. (2005). Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes. Bulletin of Marine Science, 76: 385-462.

Castilo J., Barbieri M.A., Gonzalez A. (1996). Relationship between sea surface temperature, Salinity and pelagic fish distribution off northern Chile. ICES Journal of Marine Science, 53: 139-146.

Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York: Oxford University Press. 483 p.

Gower J.F.R. (1972). A survey of the uses of remote sensing from aircraft and satellites in oceanography and hydrography. Pac. Mar. Sci. Rep. Inst. Ocean. Sciences, Sidney, British Columbia., Can. pp: 3-72.

Ivanov, P.I. 2000. Biological resources of the Caspian Sea. KaspNIRKH, Astrakhan. 130 p.

Isaaks E.H., Srivastava R.M. (1992). An Introduction to Applied Geostatistics. Oxford University Press, New York. 561 p.

Georgakarakos S., Kitsiou D. (2008). Mapping abundance distribution of small pelagic species applying hydroacoustics and Co-Kriging techniques. Hydrobiologia, 612: 155-169.

Karimzadeh G., Gabrielyan B., Fazli H. (2010). Study of Population dynamics and biological parameters of anchovy Kilka (Clupeonella engrauliformis) in southeast part of the Caspian Sea (Mazandaran province). Biological Journal of Armenia, 2: 67-74.

Laevastu T., Hayes M.L. (1981). Fisheries Oceanography and Ecology. Fishing News Books, Oxford.199 p.

Nurdin S., Mustapha M.A., Lihan T., Ghaffar M.A. (2015). Determination of Potential Fishing Grounds of Rastrelliger kanagurta Using Satellite Remote Sensing and GIS Technique. Sains Malaysiana, 44: 225-232.

O’Reilly J.E., Maritorena S., Mitchell B.G., Siegel D.A., Carder K.L., Garver S.A., Kahru M., McClain C. (1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103: 24937-24954.

Pennock J.R., Sharp J.H. (1994). Temporal alteration between light and nutrient limitation of phytoplankton production in a coastal plain estuary. Marine Ecology Progress Series Journal, 111: 275-288.

Petitgas P., Reid D., Carrera P., Iglesias M., Georgakarakos S., Liorzou B., Masse J. (2001). On the relation between schools, clusters of schools, and abundance in pelagic fish stocks. ICES Journal of Marine Science, 58: 1150-1160.

Pierre P., Mathieu W., Mathieu D., Jacques R. (2016). A Geostatistical Definition of Hotspots for Fish Spatial Distributions. Mathematical Geosciences, 48: 65-77.

Prikhod'ko, B.I. 1979. Ecological features of the Caspian kilka (genus Clupeonella). Journal of Ichthyology, 19: 27-37.

Rueda M., Defeo O. (2001). Survey abundance indices in a tropical estuarine lagoon and their management implications: a spatially-explicit approach. ICES Journal of Marine Science, 58: 1219-1231.

Sachoemar S.I., Yanagi T., Aliah R.S. (2012). Variability of sea surface chlorophyll-a, temperature and fish catch within Indonesia region revealed by satellite data. Marine Research in Indonesia, 37: 75-87.

Sedov S.I., Paritsky Y.A., Zykov L.A., Aseinova A.A. (1997). The Caspian Sea fishery: present status and prospects of development. In: Abstracts of the 1st Congress of Russian Ichthylogyists, Astrakhan. VNIRO Press, Moscow. pp: 457.

Simard Y., Lavoie D., Saucier F.J. (2002). Channel head dynamics: Capelin (Mallotus villosus) aggregation in the tidally-driven upwelling system of the Saguenay-St. Lawrence Marine Park’s whale feeding ground. Canadian Journal of Fisheries and Aquatic Sciences, 59: 197-210.

Solanki H.U., Dwivedi R.M., Nayak S.R., Jadeja J.V., Thakar D.B., Dave H.B., Patel M.I. (2001). Application of ocean color monitor chlorophyll and AVHRR SST for fishery forecast: Preliminary validation results off Gujarat coast, northwest coast of India. Indian Journal of Marine Science, 30: 132-138.

Solanki H.U., Mankodi P.C., Nayaka S.R., Somvanshi V.S. (2005a). Evaluation of remote-sensing-based potential fishing zones (PFZs) forecast methodology. Continental Shelf Research, 25: 2163-2173.

Solanki H.U., Dwivedi R.M., Nayak S.R., Naik S.K., John M.E., Somvanshi V.S. (2005b). Cover: Application of remotely sensed closely coupled biological and physical process for marine fishery resources exploration. International Journal of Remote Sensing, 26: 2029-2034.

Svetovidov A.N. (1963). Fauna of U.S.S.R fishes (Translation from Russian) Vol. II No. 1. IPST. Jerusalem. pp: 209-232.

Tang D.L., Kawamura H., Lee M.A., Dien T.V. (2003). Seasonal and spatial distribution of chlorophyll-a concentrations and water conditions in the Gulf of Tonkin, South China Sea. Remote Sensing of Environment, 85: 475-483.

Webster P.J., Magana V.O., Palmer T.N., Shukla J., Thomas R.A., Yanai M., Yasunari T. (1998). Monsoon: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research, 103: 14451-14510.

Woillez M., Walline P.D., Ianelli J.N., Dorn M.W., Wilson C.D., Punt A.E. (2016). Evaluating total uncertainty for biomass- and abundance-at-age estimates from eastern Bering Sea walleye pollock acoustic-trawl surveys. ICES Journal of Marine Science. doi:10.1093 /icesjms/fsw054.


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.