Population structure, stock status, and management implications of longtail tuna (Thunnus tonggol) in the Natuna Sea, Indonesia
Downloads
This The Natuna Sea, a strategic and biodiverse marine area, supports significant fishery resources. This study investigated the population dynamics of longtail tuna (Thunnus tonggol), a species of considerable ecological and economic importance, to provide a scientific basis for sustainable fisheries management in the region. Monthly fork length data were collected throughout 2021 from drift gillnet catches landed at Pemangkat Fishing Port, West Kalimantan, and were analyzed using the FiSAT II software package. Key population parameters were estimated as: asymptotic length (L?) = 114.45 cm, growth coefficient (K) = 0.36 year-1, and theoretical age at zero length (t?) = - 0.2865 years. Natural mortality (M) was 0.65 year-1, fishing mortality (F) was 0.58 year-1, and total mortality (Z) was 1.23 year-1. These values yielded a current exploitation rate (E) of 0.43. Recruitment was bimodal, occurring in March–April and August–September. The length at first capture (Lc) was estimated at 54.33 cm. The spawning potential ratio (SPR) was estimated to be 30%, a level considered above the minimum biological limit reference point for sustainability. The yield-per-recruit analysis demonstrates that the existing exploitation rate (E = 0.43) falls short of the rates necessary to attain maximum yield per recruit (Emax = 0.598) and the optimal yield per recruit (E0.1 = 0.507). These findings suggest that the T. tonggol stock in the Natuna Sea is currently in a developing exploitation phase, with potential for carefully managed increases in fishing effort while ensuring long-term sustainability.
Downloads
Abdussamad E.M., Said Koya K.P., Ghosh S., Rohit P., Joshi K.K., Manojkumar B., Prakasan Kemparaju, Elayath M.N.K., Dhokia H.K., Sebastine M. Binesh K.K. (2012). Fishery, biology and population characteristics of longtail tuna, Thunnus tonggol (Bleeker, 1851) caught along the Indian coast. Indian Journal of Fisheries, 59(2): 7-16.
Abesamis R.A., Russ G.R. (2010). Patterns of recruitment of coral reef fishes in a monsoonal environment. Coral Reefs, 29(4): 911921.
Allen M.S., Hightower J.E. (2010). Fish population dynamics: Mortality, growth, and recruitment. In: Inland Fisheries Management in North America. (3rd ed.). American Fisheries Society. 736 p.
Bergström U., Larsson S., Erlandsson M., Ovegård M., Ragnarsson Stabo H., Östman Ö., Sundblad G. (2022). Long-term decline in northern pike (Esox lucius L.) populations in the Baltic Sea revealed by recreational angling data. Fisheries Research, 251: 106307.
Chen N., Zhang C., Sun M., Xu B., Xue Y., Ren Y., Chen Y. (2018). The impact of natural mortality variations on the performance of management procedures for Spanish mackerel (Scomberomorus niphonius) in the Yellow Sea, China. Acta Oceanologica Sinica, 37(8): 21-30.
Çilo?lu E., Ate? C. (2022). Population dynamics of deep-water pink shrimp (Parapenaeus long-irostris Lucas, 1846) (Decapoda, Penaeidae) in the coastal waters of Tuzla (Eastern part of the Sea of Marmara). Aquatic Research, 5(3): 196-208.
Collete B.B., Nauen C.E. (1983). FAO Special Catalogue. Vol. 2. Scombrids of the world an annotated and illustrated catalogue of tunas, mackerels, bonitos, and related species known to date. In: FAO Special Catalogue. Vol. 2 Scombrids of the world an annotated and illustrated catalogue of tunas, mackerels, bonitos, and related species known to date. FAO Fisheries Synopsis. FAO. pp: 92-93.
Darvishi M., Paighambari S.Y., Ghorbani A.R., Kaymaram F. (2016). Population assessment and yield per recruit of longtail tuna (Thunnus tonggol) in Northern of the Persian Gulf and Oman Sea (Iran, Hormozgan Province). Iranian Journal of Fisheries Sciences, 17(4): 776-789.
Eagderi S., Fricke R., Esmaeili H.R., P Jalili J. (2019). Annotated checklist of the fishes of the Persian Gulf: Diversity and conservation status. Iranian Journal of Ichthyology, 6: 1-171.
Gayanilo F.C., Sparre P., Pauly D. (2005). FAO-ICLARM stock assessment tools II: User’s guide (Rev. version). Worldfish Center.
Ghosh S., Rao M.V.H., Mahesh V.U., Kumar M.S., Rohit P. (2016). Fishery, Reproductive biology and stock status of the Indian Mackerel Rastrelliger kanagurta (Cuvier, 1817), landed along the North-East Coast of India. Indian Journal of Fisheries, 63(2).
Griffiths S.P., Fry G.C., Manson F.J., Pillans R.D. (2007). Feeding dynamics, consumption rates and daily ration of longtail tuna (Thunnus tonggol) in Australian waters, with emphasis on the consumption of commercially important prawns. Marine and Freshwater Research, 58(4): 376-397.
Griffiths S.P., Pepperell J.G., Tonks M.L., Sawynok W., Olyott L., Tickell S., Zischke M.T., Burgess J., Jones E., Joyner D., Lynne J., Makepeace C., Moyle K. (2010). Biology, fisheries and status of longtail tuna (Thunnus tonggol), with special reference to recreational fisheries in Australian waters. (Final Report Longtail Tuna FRDC 2008/058). CSIRO Marine and Atmospheric Research. 110 p.
Gulland J.A. (1971). The fish resources of the oceans. FAO/Fishing News Books Ltd. Surrey, England. 255 p.
Hidayat T., Boer M., Kamal M.M., Zairion Z., Suman A. (2020). Reproductive biology of longtail tuna (Thunnus Tonggol) in the Java Sea. Indonesian Fisheries Research Journal, 26(2): 119.
Hidayat T., Noegroho T. (2018a). Biologi reproduksi ikan tongkol abu-abu (Thunnus tonggol) di perairan Laut Cina Selatan. BAWAL Widya Riset Perikanan Tangkap, 10(1): 17. (in Indonesian)
Hidayat T., Noegroho T. (2018b). Biologi reproduksi ikan tongkol abu-abu (Thunnus tonggol) di perairan Laut Cina Selatan. BAWAL, 10(1): 17-28. (in Indonesian)
Hilborn R., Walters C.J. (1992). Quantitative fisheries stock assessment: Choice, dynamics and uncertainty. Springer Science and Business Media. 585 p.
Hordyk A., Ono K., Valencia S., Loneragan N., Prince J. (2014). A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES Journal of Marine Science, 72(1): 217-231.
Isak R., Fanani Z., Widagdo S., Domani T. (2020). Maritime Policy Integration Model at Natuna on the Defense and Security Perspective. Russian Journal of Agricultural and Socio-Economic Sciences, 100(4): 73-85.
Itoh T., Yuki Y., Tsuji S. (1999). Spawning possibility and growth of longtail tuna, Thunnus tonggol, in the water around Japan. Bulletin of the National Research Institute of Far Seas Fisheries, 36: 47-53.
Ju P.-L., Yang L., Lu Z.-B., Yang S.-Y., Du J.-G., Zhong H.-Q., Chen J., Xiao J.-M., Chen M.-R., Zhang C.-Y. (2016). Age, growth, mortality, and population structure of silver croaker Pennahia argentata (Houttuyn, 1782) and red bigeye Priacanthus macracanthus Cuvier, 1829 in the North-Central Taiwan Strait. Journal of Applied Ichthyology, 32(4): 652-660.
Kaymaram F., Darvishi M., Behzadi S., Ghasemi S. (2013). Population dynamic parameters of Thunnus tonggol (Bleeker, 1851) in the Persian Gulf and Oman Sea. Iranian Journal of Fisheries Sciences, 12(4): 855-863.
Levangie P.E.L., Blanchfield P.J., Hutchings J.A. (2022). The influence of ocean warming on the natural mortality of marine fishes. Environmental Biology of Fishes, 105(10): 1447-1461.
Mace P.M., Sissenwine M.P. (1993). How much spawning per recruit is enough? In: Risk evaluation and biological reference points for fisheries management. Department of Fisheries and Oceans, National Research Council Canada. pp: 101-108.
Muhamad S.V. (2012). IIllegal Fishing di Perairan Indonesia: Permasalahan dan Upaya Penanganannya Secara Bilateral di Kawasan. Politica, 3(1): 59-85. (in Indonesian)
Muntaha A., Sunardi S., Sulkhany E., Siahaan I.B. (2023). Covid-19 and its effects on fish production and fishermen income: Evidence from Pondokdadap fishing port in Indonesia. Economic and Social of Fisheries and Marine Journal, 011(01): 117-127.
Pauly D. (1980). On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES Journal of Marine Science, 39(2): 175-192.
Prince J., Hordyk A., Valencia S.R., Loneragan N., Sainsbury K. (2015). Revisiting the concept of BevertonHolt life-history invariants with the aim of informing data-poor fisheries assessment. ICES Journal of Marine Science, 72(1): 194-203.
Quratulan A., Bilgin S., Bat L. (2016). Length based growth estimation of most commercially important Scombridae from offshore water of Pakistan coast in the Arabian Sea. Turkish Journal of Fisheries and Aquatic Sciences, 16(1).
Rabbaniha M., Mousavi Golsefid S.A. (2014). The effect of monsoon on fish larva assemblage changes in Gowatr Bay, North Oman Sea. Iranian Journal of Fisheries Sciences, 13(2): 427-436.
Sari Y.D., Mira Suryawati S.H., Nababan B.O., Hikmayani Y., Putri N.P.S. (2021). The impact of the COVID-19 pandemic on fishers in the Indramayu District. IOP Conference Series: Earth and Environmental Science, 892(1): 012044.
Silas E.G., Pillai P.P., Srinath M., Jayaprakash A.A., Muthiah C., Balan V., Yohannan T.M., Siraimeetan P., Mohan M., Livingston P., Kunhikoya K.K., Pillai M.A., Sadasiva Sharma P.S. (1986). Population dynamics of tunas. In: E.G. Silas (Ed.), Tuna fisheries of the exclusive economic zone of India: Biology and stock assessment (Vol: 36). Central Marine Fisheries Research Institute (CMFRI). pp: 20-27.
Sparre P., Venema S.C. (1998). Introduction to tropical fish stock assessment. FAO.
Wijayanti P.T., Wahyuniarti D.P.S., Fitriono R.A. (2021). Tindak Pidana Illegal Fishing di Perairan Natuna Dalam Perspektif Kriminologi. Aksiologi: Jurnal Pendidikan dan Ilmu Sosial, 2(1): 16-23.
Yasemi M., Bajgan A.N., Parsa M. (2017). Determining the growth and mortality parameters of longtail tuna (Thunnus tonggol Bleeker, 1851) using length frequency data in coastal waters of the northern Persian Gulf and Oman Sea, Iran. International Aquatic Research, 9(3): 215-224.
Yesaki M. (1994). A review of the biology and fisheries for longtail tuna (Thunnus tonggol) in the Indo-Pacific Region. In: Interaction of Pacific tuna fisheries (Vol. 2). FAO/Fishing News Books.
Copyright (c) 2026 International Journal of Aquatic Biology

This work is licensed under a Creative Commons Attribution 4.0 International License.







