Replacing Artemia salina with bigeye scad (Selar crumenophthalmus) roe for larval rearing of giant freshwater prawn (Macrobrachium rosenbergii, De Man 1879)
Downloads
Bigeye scad, Selar crumenophthalmus, roe was studied as an alternative to costly Artemia during larval rearing (20 days) of Macrobrachium rosenbergii, followed by nursing (35 days). Four treatments with Artemia replacement at 0, 50, 75, and 100% were compared in 12 round-shaped plastic buckets (30 L), each stocking 2,400 larvae. All the larvae fed with 100% fish roe died after one week. Average survival of larvae fed with 0, 50, and 75% fish roe was 38.5±6.7, 36.5±1.6, and 33.6±0.9%, respectively, which were not significantly different. However, specific growth rate and gains in weight and length were similar in the group fed 50% fish roe compared with the control (0%). Therefore, a 50% replacement is recommended, although polynomial regression suggests that a 30.4% replacement might result in the highest survival rate (46.2%). Further research should be conducted using varying levels of replacement, ranging from 0 to 80%, to determine the economically optimal replacement level more precisely.
Downloads
Ali L. (2005). Evaluation of egg custard for freshwater prawn, Macrobrachium rosenbergii (de Man) larvae culture. Journal of the Bangladesh Agricultural University, 3(2): 291-295.
Anger K. (2001). The biology of decapod crustacean larvae. Crustacean issues 14. 1st ed. A.A. Balkema Publishers, Rotterdam, Netherlands. ISBN: 9026518285. hdl:10013/epic.15410.d001.
AOAC. (1990). Official Methods of Analysis of Association of Official Analytical Chemists, 15th edn, AOAC, Arlington, VA. 1298.
AST. (Agricultural Statistics of Thailand). (2022). Office of agricultural economics. Ministry of agriculture and cooperatives, Bangkok, Thailand.
Aviz M.A.B., Abrunhosa F.A., Maciel M., Maciel C.R. (2018). On feeding of the freshwater prawn larvae Macrobrachium rosenbergii. Boletim do Instituto de Pesca, 44(4): e373.
Barros H.P., Valenti W.C. (2003). Food intake of Macrobrachium rosenbergii during larval development. Aquaculture, 216: 165-176.
Bhujel R.C. (2002). Role of lipids and essential fatty acid on the commercial fry production of Nile tilapia. AARM Newsletter, 7(2): 9-10.
Boyd C.E., Tucker C.S. (1992). Water quality and pond soil analysis for aquaculture. Alabama Agricultural Experiment Station, Auburn University, publishers, USA. ISBN: 9780817307219.
Brazão C.C., Kracizy R.O., Dutra F.M., Rodrigues M.C.G., Ballester E.L.C. (2022). Combined effect of ammonia and nitrite for Macrobrachium amazonicum (Heller, 1862) and Macrobrachium rosenbergii (De man, 1879) post-larvae. Aquaculture, 551(1): 737880.
Bunga S., Carne A., El-Din B.A.A. (2022). Composition and nutrition of fish roes. In: B.A.A. El-Din (Ed.), Fish roe biochemistry, products, and safety, 1st ed.,41-92. Academic Press, London, United Kingdom. pp: 41-83.
Carvalho F.J., Mathias M.A.C. (1998). Larvicultura em sistema fechado estático. In: W.C. Valenti (Ed.), Carcinicultura de A ?gua Doce: Tecnologia para Produßcao de Camaroes. FAPESP e IBAMA, Sao Paulo, Bras?lia. pp: 95-113.
Cavalli R.O., Lavens P., Sorgeloos P. (1999). Performance of Macrobrachium rosenbergii broodstock fed diets with different fatty acid composition. Aquaculture, 179: 387-402.
Coelho-Filho P.A., Gonc?alvez A.P., Barro H.P. (2018). Artemia nauplii intake by Macrobrachium carcinus at different larval stages in laboratory. Aquaculture, 484: 333-337.
Deshimaru O., Yone Y. (1978). Optimum level of dietary protein for prawn. Bull. Bulletin of the Japanese Society of Scientific Fisheries, 44(12): 1395-1397.
Dong X., Liu Q., Kan D., Zhao W., Guo H.L. (2020). Effects of ammonia-N exposure on the growth, metabolizing enzymes, and metabolome of Macrobrachium rosenbergii. Ecotoxicology and Environmental Safety, 189: 110046.
Emmerson W.D. (1984). Predation and energetics of Penaeus indicus (Decapoda: Penaeidae) larvae feeding on Brachionus plicatilis and Artemia nauplii. Aquaculture, 38(3): 201-209.
FAO. The State of World Fisheries and Aquaculture. (2024). Blue Transformation in Action. Rome, FAO. https://doi.org/10.4060/cd0683en
Farook M.A., Mohamed H.S.M., Mohammed N.P.M., Tariq K., Muhammed K., Ahmed A.I. (2019). Giant freshwater prawn, Macrobrachium rosenbergii (de man 1879): a review. International Journal of Research and Analytical Reviews, 6(1): 581-584.
Gaona C.A.P., Almeida M.S. de, Viau V., Poersch L.H., Wasielesky Jr., W. (2015). Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation. Aquaculture Research, 48(3): 1070-1079.
Izquierdo M.S., Socorro J., Arantzamendi L., Hernandez-Cruz C.M. (2000). Recent advances in lipid nutrition in ?sh larvae. Fish Physiology and Biochemistry, 22: 97-107.
Jeeja P.K., Imelda J., Raj R.P. (2011). Nutritional composition of rotifer (Brachionus plicatilis Muller) cultured using selected natural diets. Indian Journal of Fisheries, 58(2): 59-65.
Jesus D.P.D., Hernandez M.P., Perez-Restro C.I., Frias-Quintana C.A. (2023). Effects of fasting on compensatory growth and digestive enzymatic activity of freshwater prawn post-larvae (Macrobrnchium rosenbergii) during its culture in biofloc. Aquaculture International, 32(1): 1-17.
Jones D. A., Yule A.B., Holland D.L. (1997). Larval nutrition. In: L.R. D’Abramo, D.E. Coklin, D.M. Akiyama (Eds.), Crustacean Nutrition. Advances in World Aquaculture. World Aquaculture Society, Baton Rouge. pp: 356-389.
Kawamura G., Bagarinao T., Yong S.K., Annita M.X., Ivy L.L. (2016). Colour preference and colour vision of the larvae of the giant freshwater prawn Macrobrachium rosenbergii. Journal of Experimental Marine Biology and Ecology, 474: 67-72.
Keawthong C., Bunnoy A., Chuchird N., Srisapoome P. (2023). Immune responses and histopathological analyses of giant river prawn (Macrobrachium rosenbergii, De Man 1879) challenged with a sub-lethal dose of decapod iridescent virus 1 (DIV1) and chemical control investigation. Fish and Shellfish Immunology, 137: 108792.
Kovalenko E.E., D’Abramo L.R., Ohs C.L., Buddington R.K. (2002). A successful microbound diet for the larval culture of freshwater prawn Macrobrachium rosenbergii. Aquaculture, 210: 385-395.
Kutty M.N., Valenti W.C. (2010). Culture of other freshwater prawn species. In: M.B. New, W.C. Valenti, J.H. Tidwell, L.R. D’Abramo, M.N. Kutty (Eds.), Freshwater prawns: biology and farming. Oxford, Wiley Blackwell. pp: 502-523.
Lavens P., Sorgeloos P. (2000). The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture, 181: 397-403.
Lima J.P.V., Melo P.F., Ferreira G.M., Flickinger D.L., Correia S.E. (2021). Larviculture of the painted river prawn Macrobrachium carcinus in different culture systems. Aquacultural Engineering, 92: 102139.
Liu W., Guo Y., Li S., Luo G., Tan H. (2022). The effect of total suspended solids on the nursery of Penaeus vannamei nauplius based on biofloc technology system. Aquaculture Research, 53(17): 6969-6377.
Lovett D.L., Felder D.L. (1988). Evaluation of the rotifer Brachionus plicatilis as a substitute for Artemia in feeding larvae of Macrobrachium rosenbergii. Aquaculture, 71(4): 331-338.
Maciel C.R., New M.B., Valenti W.C. (2012). The predation of Artemia nauplii by the larvae of the Amazon River prawn, Macrobrachium amazonicum (Heller, 1862), is affected by prey density, time of day, and ontogenetic development. Journal of the World Aquaculture Society, 43(5): 659-669.
Miglio M.C., Zaga B., Gastelu J.C., Severi W., Peixoto S. (2021). Survival and metamorphosis of giant river prawn Macrobrachium rosenbergii larvae in a commercial recirculation system with artificial seawater. Aquaculture Research, 52(12): 6063-6073.
Mohanty S.M., Pillai B.R., Rangacharyulu P.V. (2013). Effect of different levels of dietary lipids on reproductive performance of captive broodstock of Macrobrachium rosenbergii. Aquaculture, 21: 19-26.
Mouritsen O.G. (2023). Roe gastronomy. International Journal of Gastronomy and Food Science, 32: 100712.
Murthy S.H., Yogeeshababu M.C., Tejpal C.S. (2012). Preliminary evaluation of the potential of B. plicatilis for use as a live food for freshwater prawn larvae. Scientific Reports, 1(8): 383.
New M.B. (2002). Farming freshwater prawns. A manual for the culture of the giant river prawn (Macrobrachium rosenbergii). FAO Fisheries Technical Paper 428. FAO, Rome. ISBN 92-5-104811-8.
New M.B., Valenti W.C., James H.T., D’Abramo L.R., Kutty M. (2010). Freshwater prawns: Biology and farming. Wiley-Blackwell. United Kingdom. DOI:10.1163/001121611X564020.
Nik-Sin N.N., Shapawi R. (2016). Innovative egg custard formulation reduced rearing period and improved survival of giant freshwater prawn, Macrobrachium rosenbergii, larvae. Journal of the World Aquaculture Society, 48 (5): 751-759.
Py C., Elizondo-Gonzalez R., Pena-Rodriguez A. (2022). Compensatory growth: Fitness cost in farmed fish and crustaceans. Reviews in Aquaculture, 14(3): 1389-1417.
Rainuzzo J.R., Reitan K.I., Olsen Y. (1997). The significance of lipids at early stages of marine fish: a review. Aquaculture, 155(1-4): 103-115.
Tansakul R. (1983). Short communication. Progress in Thailand rearing larvae of the giant prawn, Macrobrachium rosenbergii (de Man) in salted water. Aquaculture, 321(1): 95-98.
Thomaz L.A., Oshiro L.M.Y., Bambozzi A.C., Seixas F.J.T. (2004). Larval performance of the freshwater prawn (Macrobrachium rosenbergii De Man, 1879) submitted to different feeding systems. Revista Brasileira de Zootecnia 6: 1934-41.
Valenti W.C., Mallasen M., Silva C.A. (1998). Larvicultura em sistema fechado dinamico. In: Carcinicultura de Agua Doce: Tecnologia para Produßcao de Camaroes, ed. Valenti, W.C. FAPESP e IBAMA, Sao Paulo, Bras?lia. pp: 112-139.
Vilgis T.A. (2020). The physics of the mouthfeel of caviar and other fish roe. International Journal of Gastronomy and Food Science, 19: 100192.
Wei J., Tian L., Wang Y., Yu L., Zhu X. (2021). Effects of salinity, photoperiod, and light spectrum on larval survival, growth, and related enzyme activities in the giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture, 530.
Copyright (c) 2025 International Journal of Aquatic Biology

This work is licensed under a Creative Commons Attribution 4.0 International License.







