Investigating the potential infestation region of Redbelly Tilapia (Coptodon zillii, Gervais 1848) in Iraq: Impacts of climate change on distribution
Downloads
The encroachment of invasive species poses a significant threat to native ecosystems, especially in regions vulnerable to the impacts of climate change. This paper aims to examine the potential infestation region of Redbelly Tilapia (Coptodon zillii), an introduced fish species, in Iraq, should the species escape aquacultural facilities. Utilizing a Maxent model, our analysis identifies northern Iraq as the optimal habitat for C. zillii proliferation. Leveraging ecological modeling techniques and climate projections, this research emphasizes the need for proactive measures to prevent the establishment of C. zillii in these northern regions. Specifically, caution is advised against undertaking aquaculture activities in these areas to mitigate the risk of accidental escape and subsequent ecological disruption. By delineating areas of high susceptibility, this study provides actionable insights for conservation efforts and informs policy decisions aimed at preserving the integrity of native ecosystems in the face of environmental change.
Downloads
Adams M.A., Johnsen P.B., Zhou H.-Q. (1988). Chemical enhancement of feeding for the herbivorous fish Tilapia zillii. Aquaculture, 72(1-2): 95-107.
Al-Okailee M.T.K., Mutlak F.M., Lazem L.F. (2017). Distribution of red belly tilapia Coptodon zillii (Gervais, 1848) larvae in Shatt Al-Arab river and East Hammar marsh, Iraq. Basrah Journal of Agricultural Sciences, 30(1): 2631.
Bond N., Thomson J., Reich P., Stein J. (2011). Using species distribution models to infer potential climate change-induced range shifts of freshwater fish in south-eastern Australia. Marine and Freshwater Research, 62(9): 1043-1061.
Britton J.R., Gozlan R.E., Copp G.H. (2011). Managing non-native fish in the environment. Fish and Fisheries, 12(3): 256-274.
Cassemiro F.A.S., Bailly D., da Graça W.J., Agostinho A.A. (2018). The invasive potential of tilapias (Osteichthyes, Cichlidae) in the Americas. Hydrobiologia, 817: 133-154.
Çiçek E., Jawad L., Eagderi S., Esmaeili H.R., Atta Mouludi-Saleh A., Sungur S., Fricke R. (2023). Freshwater fishes of Iraq: a revised and updated annotated checklist—2023. Zootaxa, 5357(1): 1-49.
Fitzsimmons K., Martinez-Garcia R., Gonzalez-Alanis P. (2011). Why tilapia is ecoming the most important food fish on the planet. In: Liping L., Fitzsimmons K. (Eds.). The ninth international symposium on tilapia in aquaculture: Better science, better fish, better life. the AquaFish Collaborative Research Support Program, Shanghai Ocean University, Shanghai, China. pp: 8-16.
Geletu T.T., Tang S., Xing Y., Zhao J. (2024). Ecological niche and life-history traits of redbelly tilapia (Coptodon zillii, Gervais 1848) in its native and introduced ranges. Aquatic Living Resources, 37(2): 1-11.
Gu D.E., Yu F.D., Xu M., Wei H., Mu X.D., Luo D., Yang Y.X., Pan Z., Hu Y.C. (2018). Temperature effects on the distribution of two invasive tilapia species (Tilapia zillii and Oreochromis niloticus) in the rivers of South China. Journal of Freshwater Ecology, 33(1): 511-524.
Hijmans R.J., Elith J. (2024). Species distribution modeling. http://www.bayceer.uni-bayreuth.de/mm/de/ top/dl/124926/Hijmans_Elith_2014.pdf. Retrieved on 03/01/2024.
Nofal A.I., El-Shaer N.H., Nofal A.E. (2019). Molecular and histological studies of salinity effect on gills and liver of Coptodon zillii in Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 23(2): 275-290.
Ishikawa T., Tachihara K. (2008). Age, growth and maturation of the redbelly tilapia Tilapia zillii introduced into the Haebaru Reservoir on Okinawa-jima Island. Fisheries Science, 74: 527-532.
Jawad H.J., Alrufaye Z.T.A., Ahmad H.J. (2021). The concentration of some trace metals elements in water and tilapia zilli, Coptodon zillii, gills and muscle in rearing ponds of Kerbala region, Iraq. Iranian Journal of Ichthyology, 8: 255-266.
Kuhn M., Johnson K. (2013). Applied predictive modeling. Springer. 600 p.
Linde A.R., Izquierdo J.I., Moreira J.C., Garcia-Vazquez E. (2008). Invasive tilapia juveniles are associated with degraded river habitats. Aquatic Conservation: Marine and Freshwater Ecosystems, 18(6): 891-895.
Natugonza V., Musinguzi L., Kishe M.A., van Rijssel J.C., Seehausen O., Ogutu-Ohwayo R. (2021). The consequences of anthropogenic stressors on cichlid fish communities: revisiting Lakes Victoria, Kyoga, and Nabugabo. In: M.E. Abate, D.L.G. Noakes (Eds.) The behavior, ecology and evolution of cichlid fishes, Springer. pp: 217-246.
OBIS (2024). Ocean Biodiversity Information System. Intergovernmental Oceanographic Commission of UNESCO. www.obis.org. Retrieved on 03/01/2024.
Parding K.M., Dobler A., McSweeney C.F., Landgren O.A., Benestad R., Erlandsen H.B., Mezghani A., Gregow H., Räty O., Viktor E., El Zohbi J., Christensen O. B., Loukos H. (2020). GCMeval – An interactive tool for evaluation and selection of climate model ensembles. Climate Services, 18: 100167.
Peymani M., Abdoli A., Moghaddas S.D. (2022). Invasiveness risk assessment of non-native species of the redbelly tilapia (Coptodon zillii, Gervais 1848) in Shadegan wetland basin. Environmental Sciences, 20(3): 211-226.
Radkhah AR., Eagderi S., Mousavi-Sabet H. (2016). First record of the exotic species Hemiculter leucisculus (Pisces: Cyprinidae) in southern Iran. Limnetica, 35(1): 175-178.
Radkhah A.R., Eagderi S. (2020). Investigation on the global distribution of invasive fish species, convict cichlid Amatitlania nigrofasciata (Perciformes, Cichlidae) over the past years with emphasis on Iranian inland water Transylvanian Review of Systematical and Ecological Research, 22(3): 45-56.
Radkhah A.R., Eagderi S. (2021). A brief review of the geographic ranges and ecological effects of three major invasive cyprinid species in Iran. Journal of Fisheries, 9(3): 93301-93301.
Radkhah A.R., Eagderi S., Cicek E. (2022). Effects of Climate Change on the Distribution of the Invasive Stone Moroko Pseudorasbora parva (Temminck & Schlegel, 1846) (Actinopterygii: Cyprinidae) in Asian Aquatic Ecosystems. Acta Zoologica Bulgarica, 74(2): 317-323.
Setiadi E., Widyastuti Y.R., Prihadi T.H. (2018). Water quality, survival, and growth of red tilapia, Oreochromis niloticus cultured in aquaponics system. E3S Web of Conferences, pp: 1–8.
Tabasian H., Abdoli A., Valikhani H., Khosravi M. (2021). An investigation into socio-economic impacts of invasive redbelly tilapia? Coptodon? zillii (Gervais, 1848): A case study from the Shadegan Wetland,? Iran?. Scientific Reports in Life Sciences, 2(3): 25-38.
Thomas M., Pasquet A., Aubin J., Nahon S., Lecocq T.. 2021. When more is more: taking advantage of species diversity to move towards sustainable aquaculture. Biological Reviews, 96(2): 767-784.
Valavi R., Shafizadeh-Moghadam H., Matkan A., Shakiba A., Mirbagheri B., Kia S.H. (2019). Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches. Theoretical and Applied Climatology, 137: 1015-1025.
Vitule J.R.S., Freire C.A., Simberloff D. (2009). Introduction of non-native freshwater fish can certainly be bad. Fish and Fisheries, 10(1): 98-108.
Walsh J.R., Carpenter S.R., Vander Zanden M.J. (2016). Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proceedings of the National Academy of Sciences, 113(15): 4081-4085.
Copyright (c) 2024 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.