Effect of light intensity on carbohydrates, lipids contents, and bioethanol production in two algal species of Coelastrella saipanensis and Oscillatoria duplisecta
Downloads
This study aimed to examine the feasibility of two algal species of Coelastrella saipanensis (Chlorophyceae) and Oscillatoria duplisecta (Cyanophyceae) to produce bioethanol production at different light intensities. In the present study, light-intensity treatments at 27, 36, and 67 µmol m-2 s-1 were used to stimulate bioethanol production from microalga. The effects of these treatments on C. saipanensis and O. duplisecta were investigated on their growth, carbohydrate and lipids contents. The results showed that the stationary phase of C. saipanensis started on the sixth day under light intensities of 27 and 36 µmol m-2 s-1 and on the eighth day under light intensity of 67 µmol m-2 s-1. The stationary stage of blue-green algae O. duplisecta started on day eight, sixth, and seventh under light intensities of 27, 36, and 67 µmol m-2 s-1, respectively. The highest amount of carbohydrate content was 0.182, and 0.310 mg/l for C. saipanensis and O. duplisecta under light intensity of 36 ?mol m-2 s-1. The highest amount of lipid was 0.95 g/l for C. saipanensis under a light intensity of 36 ?mol m-2 s-1, while 0.74 g/L was the highest amount of lipid for O. duplisecta under 67 µmol m-2 s-1 at a light intensity of 36 µmol m-2 s-1. The highest percentage of bioethanol in C. saipanensis and O. duplisecta were 11.35 and 10.23%, respectively. The 18S rRNA and 16S rRNA genes were used for the identification, and the sequences of algae matched those registered in the GenBank (MT375484.1 for C. saipanensis and MW405018.1 for O. duplisecta). The phylogenetic tree of the ITS area was analyzed inside the 18S rRNA and 16S rRNA and the sequences showed a strong resemblance to those species registered in the Genebank.
Downloads
Abed I.J., Abdulhasan G.A., Najem A.M. (2018). Genotype versus phenotype to determine the definitive identification of the genera Chlorella beijerinck, 1890 (Chlorellaceae) and Coelastrella chodat, 1922 (Scendesmaceae). Bulletin of the Iraq Natural History Museum, 15(1): 101-111.
Adri N., Zer H., Shochats S., Ohadi I. (2003). Photoinhibition: Ahistorical perspective. Photosynthesis Research, 76: 343-370.
Al-Khazali Z., Alghanmi H. (2019). The effect of copper and magnesium nanoparticles on some growth characteristics and biochemical content for two species of algae. Ph.D thesis. Al-Qadisiyah University, Iraq. 214 p.
Andersen R.A. (2005). Algal culturing techniques. Elsevier Academic Press, San Diego, CA, USA. 589 p.
Ancona-Canche K., Lopez-Adrian S., Espinosa-Aguilar M., Garduño-Solorzano G., Toledano-Thompson T., Narvaezzapata J., Valdez-Ojeda R. (2017). Molecular phylogeny and morphologic data of strains of the genus Coelastrella (Chlorophyta, Scenedesmaceae) from a tropical region in North America (Yucatan Peninsula). Botanical Sciences, 95(3): 527-537.
Barsanti L., Gualtieri P. (2006). Algae biotechnology. In: Algae: Anatomy, biochemistry and biotechnology. CRC Press Taylor and Francis Group, Boca Raton. pp: 324-359.
Bialevich V., Zachleder V., Bišová K. (2022). The effect of variable light source and light intensity on the growth of three algal species. Cells, 11: 1293.
Bligh E.G., Dyer W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37: 911-917.
Bojorquez N.V., Rocha R.V., Escalante A.M.A., Sañudo-Barajas J.A. (2016). Production of bioethanol from biomass of microalgae Dunaliella tertiolecta. International Journal of Environmental and Agriculture Research (IJOEAR), 2(2): 110-116.
Buch B., Martins M.D., Branco L.H.Z. (2017). A widespread cyanobacterium supported by polyphasic approach: Proposition of Koinonema pervagatum gen. & sp. nov. (Oscillatoriales). Journal of Phycology, 53(5): 1097-1105.
Chen P., Min M., Chen Y., Wang L., Li Y., Chen Q., Wang C., Wan Y., Wang X., Cheng Y., Deng S., Hennessy K., Lin X., Liu Y., Wang Y., Martinez B., Ruan R. (2009). Review of the biological and engineering aspects of algae to fuels approach. International Journal of Agricultural and Biological Engineering, 2: 1-30.
Chen S., Sun X., Wang H., Han X., Zhu S., Dai J. (2014). Fingerprint analysis of polysaccharides from different Ganoderma by HPLC combined with chemometrics methods. Carbohydrate Polymers, 114: 432-439.
Choudhary P., Bhattacharya A., Prajapati S.K., Kaushik P., Malik A. (2015). Phycoremediation-coupled biomethanation of microalgal biomass. In: S-K. Kim (Ed.), Handbook of marine microalgae. Boston: Academic Press. pp: 483-99.
Choixa F.J., de-Bashana L., Bashana Y. (2012). Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense: I. Autotrophic Conc.. Enzyme and Microbial Technology, 51(5): 294-299.
Chu S. (1942). The influence of the mineral on the growth of phytoplanktonic algae. Journal of Ecology, 30: 284-325.
Darzins A., Pienkos P., Edye L. (2010). Current status and potential for algal biofuels production. Bioenergy, 11: 368-377.
Dubois M., Gilles K.A., Hamilton J.K., Repers P.A., Smith F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3): 350-356.
Feng Y., Li C., Zhang D. (2011). Lipid production of Chlorella vulgaris cultures in artificial wastewater medium. Bioresource Technology, 102: 101-105.
Guiry M.D., Guiry G.M. (2019). Algae Base. World-wide electronic publication, National University of Ireland, Galway. www.algaebase.org; retrieved on 26 March 2022.
Gupta R., Biswas K., Mishra I. (2012). Ethanol production from marine algae using yeast fermentation. BioScience Technology, 1(1): 1722.
Hegemann P. (2008). Algal sensory photoreceptors. Annual Review of Plant Biology, 59: 167-189.
Huang Y., Chen Y., Xie J., Liu H., Yin X., Wu C. (2016) Bio-oil production from hydrothermal liquefaction of high-protein high-ash microalgae including wild Cyanobacteria sp. and cultivated Bacillariophyta sp.. Fuel, 183: 9-19.
Jiminez C., Cossio B.R., Niell F.X. (2003). Relationship between physiochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Journal of Aquaculture, 221(4): 331-345.
Juneja A., Ruben C.M., Murthy G.S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies; 6: 4607-4638.
Kassim T.I., Al-Saadi H., Salman N.A. (1999). Production of some phyto-and-zooplankton and their use as live food for fish larvae. Iraq. Journal of Agriculture Production, 2nd Science Conference, 4(5): 188-201.
Kawaguchi K. (1980). Microalgae production systems in Asia. In: G. Shelef, C.J. Soeder (Eds.), Algae biomass production and use. Elsevier/ North Holland Biomedical Press, Amsterdam. pp: 25-33.
Martin M.D., Rigonato J., Taboga S.R., Branco L.H.Z. (2010). Proposal of Ancylothrix gen. nov., a new genus of Phormidiaceae (Cyanobacteria, Oscillatoriales) based on a polyphasic approach. International Journal of Systematic and Evolutionary Microbiology, 66: 2396-2405.
Mata T.M., Martins A.A., Caetano N.S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14: 217-232.
Metsoviti M.N., Papapolymerou G., Karapanagiotidis I.T., Katsoulas N. (2019). Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants, 9: 31.
Metting F. (1996). Biodiversity and application of microalgae. Journal of Industrial Microbiology, 17(6): 477-489.
Minhas N.O., Hasan T.K., Flieh H. (2019). Characterization of silver nano particles synthesized by leaves green tea extract. Journal of Global Pharma Technology, 10(10): 1423-427.
Minyuk G., Chelebieva E., Chubchikova I., Dantsyuk N., Drobetskaya I., Sakhon E., Chekanov K., Solovchenko A. (2017). Stress-induced secondary carotenogenesis in Coelastrella rubescens (Scenedesmaceae, Chlorophyta), a producer of value-added keto-carotenoids, Research Article Algae, 32(3): 245-259.
Mohammady N., Fakry E.M. (2014). Compromising between growth and oil production of Nannonochloropsis oculte cultivated under Halostress. Life Science Journal, 11(5): 193:197.
Moro C.V., Crouzet O., Rasconi S., Thouvenot A., Coffe G., Batisson I., Bohatier J. (2009). New design strategy for development of specific primer sets for PCR-based detection of Chlorophyceae and Bacillariophyceae in environmental samples. Applied and Environmental Microbiology, 75(17): 5729-5733.
Mirdan A.J. (2020). Feasibility of some algal species to produce bioethanol under different growth conditions and genetic discrimination. Ph.D. Thesis. University of Kufa. Iraq. 210 p.
Nübel U., Garcia-Pichel F., Muyzer G. (1997). PCR primers to amplify 16S rRNA genes from cyanobacteria. Applied and Environmental Microbiology, 63(8): 3327-3332.
Nzayisenga J.C., Eriksson K., Sellstedt A. (2018). Mixotrophic and heterotrophic production of lipids and carbohydrates by a locally isolated microalga using wastewater as a growth medium. Bioresource Technology, 257: 260-5.
Nzayisenga J.C., Farge X., Groll S.L., Sellstedtet A. (2020). Biotechnol effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biofuels, 13: 4.
Ometto F. (2014). Microalgae to energy: biomass recovery and pre-treatments optimization for biogas production integrated with wastewater nutrients removal. PhD. Thesis, School of Applied Sciences, Canfield University, USA. 126 p.
Ozturk B.Y., Asikkutlu B., Akkoz C., Atici T. (2018). Molecular and morphological characterization of several cyanobacteria and chlorophyta species isolated from lakes in Turkey. Turkish Journal of Fisheries and Aquatic Sciences, 19(8): 635-643.
Patterson G. (1983). Effect of heavy metals on freshwater Chlorophytata. Ph.D. thesis, University of Durham. 212 p.
Pereira L. (2017). Algal biofuels. CRC Press. ? 212 p.
Rippka R., Deruelles J., Waterbury J.R., Herdman M., Stanier R.Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1): 1-61.
Russell J., Booth A., Fuller J., Harrower B., Hedley P., Machray G., Powell W. (2001). A comparison of sequence-based polymorphism and haplotype content in transcribed and anonymous regions of the barley. Genome, 47: 389-398.
Saifuddin N., Priatharsini P. (2016). Developments in bio-hydrogen production from algae: A review. Research Journal of Applied Sciences, Engineering and Technology, 12(9): 968-982.
Sandnes J.M., Kallqvist T., Wenner D., Gislerod H.R. (2005). Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production. Journal of Applied Phycology, 17: 515-525.
Sims R., Mabee W., Saddler J., Taylor M. (2010). An overview of second-generation biofuel technologies. Bioresource Technology, 101: 1570-1580.
Skrede A., Mydland L.T., Ahlstrom O., Reitan K.I., Gislerod H.R., Overland M. (2011). Evaluation of microalgae as sources of digestible nutrients for monogastric animals. Journal of Animal Science, 20: 131-142.
Sulfahri M.S., Sunarto E., Irvansyah M.Y., Mangkoedihardjo S. (2011). Ethanol production from algae spirogyra with fermentation by Zymomonasmobilis and Saccharomyces cerevisiae. Basic and Applied Scientific Research, 1: 7.
Tam N.Y., Wong, (1989). Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp.. Environmental Pollution, 58: 19-34.
Tredici M.R. (2004). Mass production of microalgae: Photobioreactors. In: A. Richmond, (Ed.), Handbook of microalgal culture: Biotechnology and applied phycology, Oxford: Blackwell Science. 576 p.
Wiedeman V.E., Walne P.L., Trainor F.R. (1964). A new technique for obtaining axenic culture of algae. Canadian Journal of Botany, 42(7): 958-959.
Yu - Wang C., Chong C., Liu Y. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37: 21-25.
Zhang K., Feng H. (2010). Fermentation potentials of Zymomonas mobilis and its application in ethanol production from low-cost raw sweet potato. African Journal of Biotechnology, 9(37): 6122-6128.
Zhou P., Guo H., Fang Z., He Y., Weerasinghe R. (2020). Effect of light quality on the cultivation of Chlorella pyrenoidosa. E3S Web Conf., 143: 02033.
Copyright (c) 2023 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.