Physiological properties of a new strain of Saccharomyces cerevisiae Dag-1 isolated from the Caspian Sea, Russia
Downloads
This study reports the isolation of the yeast Saccharomyces cerevisiae Dag-1 (OQ107063.2) from the seawater of the Caspian Sea, specifically from the coastal territory of the Samursky Reserve, Republic of Dagestan, Russia. The strain’s diagnostic and genetic characteristics are provided. Morphological features of the S. cerevisiae Dag-1 include round cells measuring 5.0×5.0 and 1.0×1.0 µkm in size. On Sabouraud’s media, it forms round, convex, opaque, creamy, glossy colonies with a diameter of 3-5 mm. The isolated strain demonstrates the ability to thrive in seawater with a salinity ranging from 12.8-13.0‰, across various temperature ranges (0 –+10, 23-28, 35-40, 30-37°C), and under different pH conditions (5.6; 8.4-8.5). Additionally, it utilizes monomeric sugars (L-glucose, D-mannose, D-sucrose, D-arabinose, D-cellobiose, and D-xylose) as a source of carbon and energy, also metabolizing alcohols such as D-sorbitol, D-mannitol, and D-inositol (vitamin B8). The strain does not absorb the amino acids lysine and ornithine, and it is catalase-, amylase-, and ?-glucosidase-positive while being urease-, oxidase-, and ?-galactosidase-negative. Moreover, the strain exhibits high sensitivity to the antibiotics of ketoconazole, nystatin, clotrimazole, fluconazole, and itraconazole. Resistance is observed against the inhibitor potassium tellurite and pathogenic bacteria Escherichia coli, Staphylococcus aurens, and Klebsiella oxitoka. These findings contribute to expanding our understanding of the ecological distribution of marine yeasts and the isolation of an S. cerevisiae strain possessing characteristics of industrial microorganisms.
Downloads
Angelov A.D., Stefanova P., Angelov A.I. (2015). Molecular identification of yeast using amplification of ITS1-5.8S-ITS2 rDNA region. Proceedings of University of Ruse, 54(10.2): 47-51. (In Russian)
Ayer A., Gourlay C.W., Dawes I.W. (2014). Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisiae. FEMS Yeast Res, 14(1): 60-72
Baba S., Sawada K., Orita R., Kimura K., Goto M., Kobayashi G. (2022). Isolation of sake yeast strains from Ariake sea tidal flats and evaluation of their brewing characteristics. The Journal of General and Applied Microbiology, 68(1): 30-37.
Bai F.-Y., Han D.-Y., Duan S.-F., Wang Q.-M. (2022). The Ecology and Evolution of the Baker’s Yeast Saccharomyces cerevisiae. Genes, 13: 230-251.
Bellemain E., Carlsen T., Brochmann C., Coissac E., Taberlet P., Kauserud H. (2010). ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology, 10: 189-198.
Cap M., St?pánek L, Harant K., Váchová L. (2012). Cell differentiation within a yeast colony: Metabolic and regulatory parallels with a tumor-affected organism. Molecular Cell, 46(4): 436-448.
Chasteen T.G., Fuentes D.E., Tantaleán J.C., Claudio Christian Vásquez C.C. (2009). Tellurite: History, oxidative stress, and molecular mechanisms of resistance. Reviews. FEMS Microbiology, 33(4): 820-832.
Greetham D., Zaky A.S., Du C. (2019). Exploring the tolerance of marine yeast to inhibitory compounds for improving bioethanol production. Sustainable Energy and Fuels, 3: 1545-1553.
Guidelines MUK 4.2.1890-04 (2004). Determination of the sensitivity of microorganisms to antibacterial drugs: methodical instructions. Moscow: Federal Center for State Sanitary and Epidemiological Surveillance of the Ministry of Health of Russia. 91 p.
Hadziavdic K., Lekang K., Lanzen A., Jonassen I., Thompson E.M., Troedsson C. (2014). Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One, 9(2): 87624-87634.
Kaewkrajay C., Chanmethakul T., Limtong S. (2020). Assessment of diversity of culturable marine yeasts associated with corals and zoanthids in the Gulf of Thailand, South China Sea. Microorganisms, 8(4): 474-490.
Kachmazov G.S. (2021). Fermentation yeast. Practical guide: Study guide. SPb.: "Lan" Publ. Series: Food production. 224 p.
Kopytina N.I. (2018). Aquatic microscopic fungi of the Ponto-Caspian basin (checklist, synonymics). Kovalevsky Institute of Marine Biological Research of RAS. Voronezh: Kovcheg LLC. 292 p.
Kurtzman C.P., Fell J.W., Boekhout T. (2011). The yeasts, a taxonomic study, 5th ed. Elsevier. 2354 p.
Kwon Y.M., Choi H.S., Lim J.Y., Jang H.S., Chung D. (2020). Characterization of amylolytic activity by a marine-derived yeast Sporidiobolus pararoseus PH-Gra1. Mycobiology, 1-10.
Libkind D., Buzzini P., Turchetti B., Rosa C.A. (2017). Yeasts in continental and seawater. Chapter 1. Yeasts in Natural Ecosystems: Diversity, 1-61.
Monapathi M.E, Bezuidenhout C.C., Rhode O.H.J. (2020). Aquatic yeasts: diversity, characteristics and potential health implications. Journal of Water and Health, 18(2): 91-105.
Nislow C., Lee A.Y., Allen P.L., Giaever G., Smith A., Gebbia M., Stodieck L.S., Hammond J.S., Birdsall H.H., Hammond T.G. (2015). Genes required for survival in microgravity revealed by genome-wide yeast deletion collections cultured during spaceflight. BioMed Research International, 2015: 976458.
Obara N., Ishida M., Hamada-Sato N., Urano N. (2012). Efficient bioethanol production from scrap paper shredder by a marine Saccharomyces cerevisiae derived C-19. Studies in Science and Technology, 1(2): 127-132.
Obara N., Oki N., Okai M., Ishida M., Urano N. (2015). Development of a simple isolation method for yeast Saccharomyces cerevisiae with high fermentative activities from coastal waters. Union Press, 71-76.
Ogawa G., Ishida M., Shimotori K., Urano N. (2008). Isolation and characterisation of Saccharomyces cerevisiae from Hydrospheres. Annals of Microbiology, 58: 261-264.
Peris D., Ubbelohde E.J., Kuang M.C., Kominek J., Langdon Q.K., Adams M., Koshalek J.A. (2023). Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces. Nature Communications, 14(1): 690-709.
Sanger F., Nicklen S., Coulson A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 84(12): 5463-5467.
Saravanakumar K., Senthilraja P., Kathiresan K. (2013). Bioethanol production by mangrove-derived marine yeast Sacchromyces cerevisiae. Journal Of King Saud University - Science, 25(2): 121-127.
Tamura K., Nei M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3): 512-526.
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). MEGA6: Molecular evolutionary genetics analysis. Molecular Biology and Evolution, 30(12): 2725-2729.
Tian B.-C., Liu G.-L., Chi Z., Hu Z., Chi Z.-M. (2021). Occurrence and distribution of strains of Saccharomyces cerevisiae in China Seas. Jornal Marine Science and Engineering, 9(6): 590-602.
Urano N., Shirao A., Okai M., Ishida M. (2017). High Ethanol production by marine-derived yeasts-Saccharomyces cerevisiae under stress pressures. Advances in Microbiology, 7(5): 349-357.
Urano N., Ishida M., Naito Y., Endo R., Takei T., Takashio M., Okai M. (2021) Ethanol fermentation by high-stress-tolerance aquatic yeasts and their mutants. Advances in Microbiology, 11: 616-629.
Usha V., Amutha E., Pushpalaksmi E., Jenson S.J., Rajaduraipandian S., Gandhimathi S., Annadurai G. (2022). Synthesis of iron oxide magnetic nanoparticles: Characterization and its biomedical application. Journal of Applied Sciences and Environmental Management, 26(2): 281-286.
Zaky A.S., Tucker G.A., Daw Z.Y., Du C. (2014). Marine yeast isolation and industrial application. Review. FEMS Yeast Research, 14(6): 813-825.
Zaky A., Greetham D., Louis E.J., Tucker G., Du C. (2016). A new isolation and evaluation method for marine derived yeast spp. with potential applications in industrial biotechnology. Journal of microbiology and biotechnology, 26(11): 1891-1907.
Zaky A.S., French C.E., Tucker G.A., Du C. (2020). Improving the productivity of bioethanol production using marine yeast and seawater-based media. Biomass and Bioenergy, 139: 105615-105625.
Copyright (c) 2023 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.