Natural biopolymers in bone tissue engineering from aquatic resources: A review
Downloads
Bone tissue engineering is a rapidly expanding research area that uses an artificial scaffold as a template for new tissue formation by culturing osteoblasts, along with adding regulating factors that promote cell recruitment, growth differentiation, and mineralized bone tissue. Different natural and synthetic materials and their combinations are used for this purpose. However, polymers have many advantages to use as scaffolds in bone tissue engineering, and therefore, their application in tissue engineering has been widened in recent years. In this work, we aimed to review those natural polymers that are used in bone tissue engineering with an emphasis on those originating from natural aquatic resources. In this regard, the recent findings in the application of those natural biopolymers and their characterization viz. hydroxyapatite, starch, fibrinogen, silk fibroin, alginate, gelatin, chitosan, and collagen for use as scaffolds in bone tissue engineering were discussed.
Downloads
Abazari M.F., Soleimanifar F., Amini Faskhodi M., Mansour R.N., Amini Mahabadi J., Sadeghi S., Hassannia H., Saburi E., Enderami S.E., Khani M.M. (2020). Improved osteogenic differentiation of human induced pluripotent stem cells cultured on polyvinylidene fluoride/collagen/platelet?rich plasma composite nanofibers. Journal of Cellular Physiology, 235(2): 1155-1164
Abedinia A., Nafchi A.M., Sharifi M., Ghalambor P., Oladzadabbasabadi N., Ariffin F., Huda N. (2020). Poultry gelatin: Characteristics, developments, challenges, and future outlooks as a sustainable alternative for mammalian gelatin. Trends in Food Science and Technology, 104: 14-26.
Aguilar A., Zein N., Harmouch E., Hafdi B., Bornert F., Offner D., Clauss F., Fioretti F., Huck O., Benkirane-Jessel N. (2019). Application of chitosan in bone and dental engineering. Molecules, 24(16): 3009.
Ahadifar M., Ojagh S.M., Hosseinifar H., Alishahi A., Kordjazi M., Khanlar M.A. (2021a). Comparison of antioxidant activity of alginate extracted by acidic method from two species of brown algae, Sargassum vulgare and Padina pavonic. Journal of Aquaculture Science, 9(1): 108-122.
Ahadifar M., Ojagh S.M., Hosseinifar H., Khanlar M.A, Kordjazi M., Alishahi A. (2021b). Comparison of antioxidant properties of sodium alginate extracted by water solvent method from brown macroalgaes of Sargassum vulgare and Padina pavonic. Journal of Utilization and Cultivation of Aquatics, 8(2): 90-103.
Ahadifar M., Ojagh S.M., Hosseinifar H., Khanlar M.A, Kordjazi M., Alishahi A. (2020). Comparison of antioxidant properties of sodium alginate extracted by water solvent method from brown macroalgaes of Sargassum vulgare and Padina pavonic. Journal of Aquaculture Science, 8(2): 90-103.
Albu M.G., Titorencu I., Ghica M.V. (2011). Collagen-based drug delivery systems for tissue engineering. In: Biomaterials Applications for Nanomedicine. InTechOpen. pp: 333-358.
Ali A., Rehman A., Shehzad Q., Khan S., Karim A., Afzal N., Hussain A., Yang F., Xia W. (2020). Development and characterization of nanoemulsions incorporating tuna fish oil. International Journal of Agricultural Science 7(1): 2348-3997.
Aravamudhan A., Ramos D.M., Nip J., Harmon M.D., James R., Deng M., Laurencin C.T., Yu X., Kumbar S.G. (2013). Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. Journal of Biomedical Nanotechnology, 9(4): 719-731.
Ashwin B., Abinaya B., Prasith T., Chandran S.V., Yadav L.R., Vairamani M., Patil S., Selvamurugan N. (2020). 3D-poly (lactic acid) scaffolds coated with gelatin and mucic acid for bone tissue engineering. International Journal of Biological Macromolecules, 162: 523-532.
Athanasiou K.A., Agrawal C.M., Barber F.A., Burkhart S.S. (1998). Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy: The Journal of Arthroscopic and Related Surgery, 14(7): 726-737.
BhattacharjeeA., Bose S. (2022). 3D printed hydroxyapatite–Zn2+ functionalized starch composite bone grafts for orthopedic and dental applications. Materials and Design, 221: 110903
Bonadio J., Smiley E., Patil P., Goldstein S. (1999). Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nature Medicine, 5(7): 753-759.
Burke A., Hasirci N. (2004). Polyurethanes in biomedical applications. Biomaterials: From Molecules to Engineered Tissue, 83-101.
Calori G., Tagliabue L., Gala L., d’Imporzano M., Peretti G., Albisetti W. (2008). Application of rhBMP-7 and platelet-rich plasma in the treatment of long bone non-unions: a prospective randomised clinical study on 120 patients. Injury, 39(12): 1391-1402.
Chapekar M.S. (2000). Tissue engineering: challenges and opportunities. Journal of Biomedical Materials Research,53(6): 617-620.
Charnley J. (1960). Anchorage of the femoral head prosthesis to the shaft of the femur. The Journal of Bone and Joint Surgery, 42(1): 28-30.
Chattopadhyay S., Raines R.T.(2014). Collagen?based biomaterials for wound healing. Biopolymers, 101(8): 821-833.
Chavarría-Gaytán M., Olivas-Armendáriz I., García-Casillas P., Martínez-Villafañe A., Martínez-Pérez C. (2009). Synthesis and Characterization of Polyurethane Scaffolds for Biomedical Applications. MRS Online Proceedings Library (OPL), 1243: 19.
Chen D., Bei J., Wang S. (2000). Polycaprolactone microparticles and their biodegradation. Polymer Degradation and Stability, 67(3): 455-459.
Chen Y., Kawazoe N., Chen G. (2018). Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Acta Biomaterialia, 67: 341-353.
Chenite A., Buschmann M., Wang D., Chaput C., Kandani N. (2001). Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydrate Polymers, 46(1): 39-47.
Dehghan M., Mehrizi M.K., Nikukar H. (2021). Modeling and optimizing a polycaprolactone/gelatin/polydimethylsiloxane nanofiber scaffold for tissue engineering: using response surface methodology. The Journal of The Textile Institute, 112(3): 482-493.
Diekjürgen D., Grainger D.W. (2017). Polysaccharide matrices used in 3D in vitro cell culture systems. Biomaterials, 115-96:141.
Ding L., Huang Q., Li H., Wang Z., Fu X., Zhang B. (2019). Controlled gelatinization of potato parenchyma cells under excess water condition: structural and in vitro digestion properties of starch. Food and Function, 10(9): 5312-5322.
Dutta P.K., Dutta J., Tripathi V. (2004). Chitin and chitosan: Chemistry, properties and applications.
Dutta S., Passi D., Singh P., Bhuibhar A. (2015). Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review. Irish Journal of Medical Science (1971-), 184: 101-106.
Fan J., Tsui C.P., Tang C.Y., Chow C. (2004). Influence of interphase layer on the overall elasto-plastic behaviors of HA/PEEK biocomposite. Biomaterials, 25(23): 5363-5373.
Farokhi M., Jonidi Shariatzadeh F., Solouk A., Mirzadeh H. (2020). Alginate based scaffolds for cartilage tissue engineering: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 69(4): 230-247.
Felgueiras H., Antunes J., Martins M., Barbosa M. (2018). Fundamentals of protein and cell interactions in biomaterials. In: M.A. Barbosa, M.C.L. Martins (Eds.), Peptides and proteins as biomaterials for tissue regeneration and repair, Elsevier. pp. 1-27.
Ferreira A.M., Gentile P., Chiono V., Ciardelli G. (2012). Collagen for bone tissue regeneration. Acta Biomaterialia, 8(9): 3191-3200.
Flanagan T., Frese J., Sachweh J., Diamantouros S., Koch S., Schmitz-Rode T., Jockenhoevel S. (2009). The Use of Fibrin as an Autologous Scaffold Material for Cardiovascular Tissue Engineering Applications: From in Vitro to in Vivo Evaluation. In: 4th European Conference of the International Federation for Medical and Biological Engineering: ECIFMBE 2008 23–27 November 2008 Antwerp, Belgium. Pp: 2186-2189.
Fratzl P.(2008). Collagen: structure and mechanics, an introduction. 2008th edition, Springer. 524 p.
Ghalia M.A., Dahman Y. (2017). Biodegradable poly (lactic acid)-based scaffolds: synthesis and biomedical applications. Journal of Polymer Research, 24: 1-22.
Goudarzi Z.M., Behzad T., Ghasemi-Mobarakeh L., Kharaziha M. (2021). An investigation into influence of acetylated cellulose nanofibers on properties of PCL/Gelatin electrospun nanofibrous scaffold for soft tissue engineering. Polymer, 213: 123313.
Govender S., Csimma C., Genant H.K., Valentin-Opran A., Amit Y., Arbel R., Aro H., Atar D., Bishay M., Börner M.G. (2002). Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. JBJS, 84(12): 2123-2134.
Griffith L.G., Naughton G. (2002). Tissue engineering--current challenges and expanding opportunities. Science, 295(5557): 1009-1014.
Hench L.L., Polak J.M. (2002). Third-generation biomedical materials. Science, 295(5557): 1014-1017.
Hoyer B., Bernhardt A., Heinemann S., Stachel I., Meyer M., Gelinsky M. (2012). Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules, 13(4): 1059-1066.
Hutmacher D.W. (2001). Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1): 107-124.
Imre B., Pukánszky B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6): 1215-1233.
Islam S., Bhuiyan M.R., Islam M. (2017). Chitin and chitosan: structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment, 25: 854-866.
Jäger M., Herten M., Fochtmann U., Fischer J., Hernigou P., Zilkens C., Hendrich C., Krauspe R. (2011). Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. Journal of Orthopaedic Research, 29(2): 173-180.
Jiang Y., Fu C., Wu S., Liu G., Guo J., Su Z. (2017). Determination of the deacetylation degree of chitooligosaccharides. Marine Drugs, 15(11): 332.
Jung R.E., Hälg G.A., Thoma D.S., Hämmerle C.H. (2009). A randomized, controlled clinical trial to evaluate a new membrane for guided bone regeneration around dental implants. Clinical Oral Implants Research, 20(2): 162-168.
Kadler K.E., Baldock C., Bella J., Boot-Handford R.P. (2007)). Collagens at a glance. Journal of Cell Science, 120(12): 1955-1958.
Kadler K.E., Holmes D.F., Trotter J.A., Chapman J.A. (1996). Collagen fibril formation. Biochemical Journal, 316(1): 1-11.
Kaplan D., Adams W.W., Farmer B., Viney C. (1994). Silk: biology, structure, properties, and genetics. In: ACS Publications
Kasper F.K., Tanahashi K., Fisher J.P., Mikos A.G. (2009). Synthesis of poly (propylene fumarate). Nature Protocols, 4(4): 518-525.
Katoch A., Choudhury A.R. (2002). Understanding the rheology of novel guar-gellan gum composite hydrogels. Materials Letters, 263: 127234.
Khatoon H., Ahmad S. (2018). Polyurethane: a versatile scaffold for biomedical applications. Significances Bioeng. Biosci, 2: 2-4.
Kimura A., Yoshida F., Ueno M., Taguchi M. (2021) .Application of radiation crosslinking technique to development of gelatin scaffold for tissue engineering. Radiation Physics and Chemistry, 180: 109287.
Kretlow J.D., Young S., Klouda L., Wong M., Mikos A.G. (2009). Injectable biomaterials for regenerating complex craniofacial tissues. Advanced Materials, 21(32?33): 3368-3393.
Kurowiak J., Kaczmarek-Pawelska A., Mackiewicz A.G., Bedzinski R. (2020). Analysis of the degradation process of alginate-based hydrogels in artificial urine for use as a bioresorbable material in the treatment of urethral injuries. Processes, 8(3): 304.
Kutikov A.B., Song J. (2015). Biodegradable PEG-based amphiphilic block copolymers for tissue engineering applications. ACS Biomaterials Science and Engineering, 1(7): 463-480.
Langer R. (2000). Biomaterials: status, challenges, and perspectives. AIChE Journal, 46(7): 1286-1289.
Lasprilla,A.J., Martinez G.A., Lunelli B.H., Jardini, A.L., Maciel Filho R. (2012). Poly-lactic acid synthesis for application in biomedical devices—A review. Biotechnology Advances, 30(1): 321-328.
Letic-Gavrilovic A., Piattelli A., Abe K. (2003). Nerve growth factor [beta](NGF [beta]) delivery via a collagen/hydroxyapatite (Col/HAp) composite and its effects on new bone ingrowth. Journal of Materials Science: Materials in Medicine, 14(2): 95.
Li R., Yao D. (2008). Preparation of single poly (lactic acid) composites. Journal of Applied Polymer Science, 107(5): 2909-2916.
Li S.H., De Wijn J.R., Layrolle P., De Groot K. (2002). Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research, 61(1): 109-120.
Liu D., Nikoo M., Boran G., Zhou P., Regenstein J.M. (2015). Collagen and gelatin. Annual Review of Food Science and Technology, 6: 527-557.
Liu X., Ma P.X. (2004) .Polymeric scaffolds for bone tissue engineering. Annals of Biomedical Engineering, 32: 477-486.
Livingston T., Ducheyne P., Garino J. (2002). In vivo evaluation of a bioactive scaffold for bone tissue engineering. Journal of Biomedical Materials Research, 62(1): 1-13.
Lopes M.S., Jardini A., Maciel Filho R. (2012). Poly) lactic acid) production for tissue engineering applications. Procedia Engineering, 42: 1402-1413.
Lou C.-W., Yao C.-H., Chen Y.-S., Hsieh T.-C., Lin J.-H., Hsing W.-H. (2008). Manufacturing and properties of PLA absorbable surgical suture. Textile Research Journal, 78(11): 958-965
Lu Q., Pandya M., Rufaihah A.J., Rosa V., Tong H.J., Seliktar D., Toh W.S. (2015). Modulation of dental pulp stem cell odontogenesis in a tunable PEG-fibrinogen hydrogel system. Stem cells International, 2: 015.
Lysaght M.J., Reyes J. (2001). The growth of tissue engineering. Tissue engineering, 7(5): 485-493.
Ma P.X., Langer R. (1995). Degradation, structure and properties of fibrous nonwoven poly (glycolic acid) scaffolds for tissue engineering. MRS Online Proceedings Library (OPL), 394: 99.
Ma P.X., Zhang R., Xiao G., Franceschi R. (2001). Engineering new bone tissue in vitro on highly porous poly (??hydroxyl acids)/hydroxyapatite composite scaffolds. Journal of Biomedical Materials Research, 54(2): 284-293
Mansour R.N., Soleimanifar F., Abazari M.F., Torabinejad S., Ardeshirylajimi A., Ghoraeian P., Mousavi S.A., Sharif Rahmani E., Hassannia H., Enderami S.E. (2018). Collagen coated electrospun polyethersulfon nanofibers improved insulin producing cells differentiation potential of human induced pluripotent stem cells. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3): 734-739.
Mansouri R., Jouan Y., Hay E., Blin-Wakkach C., Frain M., Ostertag A., Le Henaff C., Marty C., Geoffroy V., Marie P.J. (2017). Osteoblastic heparan sulfate glycosaminoglycans control bone remodeling by regulating Wnt signaling and the crosstalk between bone surface and marrow cells. Cell Death and Disease, 8(6): e2902-e2902.
Maquet V., Jerome R. (1997). Design of macroporous biodegradable polymer scaffolds for cell transplantation. Materials Science Forum, 250: 15-42.
Merrill E.W., Salzman E.W. (1983). Polyethylene oxide as a biomaterial. ASAIO Journal, 6(2): 60-64.
Migliaresi C., De Lollis A., Fambri L., Cohn D. (1991). The effect of thermal history on the crystallinity of different molecular weight PLLA biodegradable polymers. Clinical Materials, 8(1-2): 111-118.
Miguel F.B., de Almeida Barbosa Júnior A., de Paula F.L., Barreto I.C., Goissis G., Rosa F.P. (2013). Regeneration of critical bone defects with anionic collagen matrix as scaffolds. Journal of Materials Science: Materials in Medicine, 24: 2567-2575.
Mohiuddin M., Kumar B., Haque S. (2017). Biopolymer composites in photovoltaics and photodetectors. Biopolymer Composites in Electronics, 459-486.
Morrison W., Tester R., Snape C., Law R., Gidley M.J. (1993). Swelling and gelatinization of cereal starches. IV. Some effects of lipid-complexed amylose and free amylose in waxy and normal barley starches. Cereal Chem, 70: 385-391
Mouw J.K., Ou G., Weaver V.M. (2014). Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology, 15(12): 771-785.
Najahi Mohammadizadeh Z., Ahadifar M., Mobinikhaledi M., Ahadi N. (2023). The green synthesis of environmentally friendly magnetic silver complex stabilized on MnCoFe2O4@sodium alginate nanoparticles (MCF@S-ALG/Ag) and evaluation of their antibacterial activity. Environmental Science and Pollution Research, 30(13): 37185-37196.
Narayanan G., Vernekar V.N., Kuyinu E.L., Laurencin C.T. (2016). Poly (lactic acid)-based biomaterials for orthopaedic regenerative engineering. Advanced Drug Delivery Reviews, 107: 247-276.
Neves S.C., Teixeira L.S.M., Moroni L., Reis R.L., Van Blitterswijk C.A., Alves N.M., Karperien M., Mano J.F. (2011). Chitosan/Poly (?-caprolactone) blend scaffolds for cartilage repair. Biomaterials, 32(4): 1068-1079.
Nigam P., Singh D. (1995). Enzyme and microbial systems involved in starch processing. Enzyme and Microbial Technology, 17(9): 770-778.
Olsen D., Yang C., Bodo M., Chang R., Leigh S., Baez J., Carmichael D., Perälä M., Hämäläinen E.-R., Jarvinen M. (2003). Recombinant collagen and gelatin for drug delivery. Advanced Drug Delivery Reviews, 55(12): 1547-1567.
Olszta M.J., Cheng X., Jee S.S., Kumar R., Kim Y.-Y., Kaufman M.J., Douglas E.P., Gower L.B. (2007). Bone structure and formation: A new perspective. Materials Science and Engineering: R: Reports, 58(3-5): 77-116.
Orgel J.P., Irving T C., Miller A., Wess T.J. (2006). Microfibrillar structure of type I collagen in situ. Proceedings of the National Academy of Sciences, 103(24): 9001-9005.
Ostuni E., Chapman R.G., Holmlin R.E., Takayama S., Whitesides G.M. (2001). A survey of structure? property relationships of surfaces that resist the adsorption of protein. Langmuir, 17(18), 5605-5620
Pawelec K., Best S., Cameron R. (2016). Collagen: a network for regenerative medicine. Journal of Materials Chemistry B, 4(40): 6484-6496
Phan H.T., Bartelt-Hunt S., Rodenhausen K.B., Schubert M., Bartz J.C. (2015). Investigation of bovine serum albumin (BSA) attachment onto self-assembled monolayers (SAMs) using combinatorial quartz crystal microbalance with dissipation (QCM-D) and spectroscopic ellipsometry (SE). PloS One, 10(10): e0141282.
Pielichowska K., Blazewicz S. (2010). Bioactive polymer/hydroxyapatite (nano) composites for bone tissue regeneration. Biopolymers: Lignin, Proteins, Bioactive Nanocomposites, 97-207.
Pillai C.K., Paul W., Sharma C.P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7): 641-678.
Pitt G., Gratzl M., Kimmel G., Surles J., Sohindler A. (1981). Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (?-caprolactone), and their copolymers in vivo. Biomaterials, 2(4): 215-220.
Purohit S.D., Singh H., Bhaskar R., Yadav I., Chou C.-F., Gupta M.K., Mishra N.C. (2020). Gelatin—alginate—cerium oxide nanocomposite scaffold for bone regeneration. Materials Science and Engineering: C, 116: 111111.
Rajangam T., An S.S.A. (2013). Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. International Journal of Nanomedicine, 3641-3662.
Rajangam T., Paik H.-J., An S.-S.A. (2012). Fabricating fibrinogen microfibers with aligned nanostructure, as biodegradable threads for tissue engineering. Bulletin of the Korean Chemical Society, 33(6): 2075-2078.
Rajangam T., Paik H.-J., An S.S.A. (2011). Development of fibrinogen microspheres as a biodegradable carrier for tissue engineering. BioChip Journal, 5: 175-183.
Ramshaw J.A. (2016). Biomedical applications of collagens. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 104(4): 665-675.
Rejinold N.S., Muthunarayanan M., Deepa N., Chennazhi K., Nair S., Jayakumar R. (2010). Development of novel fibrinogen nanoparticles by two-step co-acervation method. International Journal of Biological Macromolecules, 47(1): 37-43.
Riedelová-Reicheltová Z., Brynda E., Riedel T. (2016). Fibrin nanostructures for biomedical applications. Physiological Research, 65: S263.
Rosellini E., Madeddu D., Barbani N., Frati C., Graiani G., Falco A., Lagrasta C., Quaini F., Cascone M.G. (2020). Development of biomimetic alginate/gelatin/elastin sponges with recognition properties toward bioactive peptides for cardiac tissue engineering. Biomimetics, 5(4): 67.
Rowe S.L., Lee S., Stegemann J.P. (2007). Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomaterialia, 3(1): 59-67.
Rudin A., Choi P. (2012). The Elements of polymer science and engineering: Academic Press. 584 p.
Saghebasl S., Davaran S., Rahbarghazi R., Montaseri A., Salehi R., Ramazani A. (2018). Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. Journal of Biomaterials Science, Polymer Edition, 29(10): 1185-1206.
Sahoo D.R., Biswal T. (2021). Alginate and its application to tissue engineering. SN Applied Sciences, 3(1): 30.
Sargeant T.D., Desai A.P., Banerjee S., Agawu A., Stopek J.B. (2012). An in situ forming collagen–PEG hydrogel for tissue regeneration. Acta Biomaterialia, 8(1): 124-132.
Shimao M. (2001). Biodegradation of plastics. Current Opinion in Biotechnology, 12(3), 242-247.
Singh S., Dutt D., Kaur P., Singh H., Mishra N.C. (2020). Microfibrous paper scaffold for tissue engineering application. Journal of Biomaterials Science, Polymer Edition, 31(8): 1091-1106.
Smith A.M., Moxon S., Morris G. (2016). Biopolymers as wound healing materials. In: Wound healing biomaterials, Elsevier. pp: 261-287.
Sommerfeldt D., Rubin C. (2001). Biology of bone and how it orchestrates the form and function of the skeleton. European Spine Journal, 10: S86-S95.
Stone G.W., Ellis S.G., Cox D.A., Hermiller J., O'Shaughnessy C., Mann J.T., Turco M., Caputo R., Bergin P., Greenberg J.(2004). A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. New England Journal of Medicine, 350(3): 221-231.
Swartz D.D., Russell J.A., Andreadis S.T. (2005). Engineering of fibrin-based functional and implantable small-diameter blood vessels. American Journal of Physiology-Heart and Circulatory Physiology, 288(3): H1451-H1460.
Tan H., Chu C.R., Payne K.A., Marra K.G. (2009). Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30(13): 2499-2506.
Tan H., Marra K. G. (2010). Injectable, biodegradable hydrogels for tissue engineering applications. Materials, 3(3): 1746-1767.
Tester R.F., Karkalas J., Qi X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39(2): 151-165.
Thomson R., Wake M., Yaszemski M., Mikos A. (1995). Biodegradable polymer scaffolds to regenerate organs. In: Biopolymers Ii, Springer. pp. 245-274.
Tomoaia G., Pasca R.-D. (2015). On the collagen mineralization. A review. Clujul Medical, 88(1): 15.
Upadhyaya L., Singh J., Agarwal V., Tewari R.P. (2013). Biomedical applications of carboxymethyl chitosans. Carbohydrate Polymers, 91(1): 452-466
Vacanti J.P., Langer R. (1999). Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. The Lancet, 354: S32-S34.
Venkatesan J., Pallela R., Bhatnagar I., Kim S.-K. (2012). Chitosan–amylopectin/hydroxyapatite and chitosan–chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 51(5): 1033-1042.
Wang Y.-Y., Lu? L.-X., Shi J.-C., Wang H.-F., Xiao Z.-D., Huang N.-P. (2011). Introducing RGD peptides on PHBV films through PEG-containing cross-linkers to improve the biocompatibility. Biomacromolecules, 12(3): 551-559
Wendels, S., de Souza Porto, D., & Avérous, L. (2021). Synthesis of biobased and hybrid polyurethane xerogels from bacterial polyester for potential biomedical applications. Polymers, 13(23), 4256.
Wnek G.E., Carr M.E., Simpson D.G., Bowlin G.L. (2003). Electrospinning of nanofiber fibrinogen structures. Nano Letters, 3(2): 21-216-3.
Wray L.S., Rnjak-Kovacina J., Mandal B.B., Schmidt D.F., Gil E.S., Kaplan D.L. (2012). A silk-based scaffold platform with tunable architecture for engineering critically-sized tissue constructs. Biomaterials, 33(36): 9214-9224.
Yang S., Leong K.-F., Du Z., Chua C.-K. (2001). The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue engineering, 7(6): 679-689.
Yilmaz Atay H. (2019). Antibacterial activity of chitosan-based systems. Functional Chitosan: Drug Delivery and Biomedical Applications, 457-489.
Zhang Y., Shi B., Li C., Wang Y., Chen Y., Zhang W., Luo T., Cheng X. (2009). The synergetic bone-forming effects of combinations of growth factors expressed by adenovirus vectors on chitosan/collagen scaffolds. Journal of Controlled Release, 136(3): 172-178.
Copyright (c) 2023 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.