Gut content, feeding behavior, and gut microbiome of Pangasius nasutus (Bleeker, 1863) in natural habitat and captivity environment: A review
Downloads
Pangasius nasutus is a freshwater fish that has become one of the major economic sources for fish farmers in Pahang River, Malaysia. Effective aquaculture and conservation P. nasutus depends on the understanding of their gut composition, feeding habits, and gut microbiome. Pangasius nasutus in their natural habitat mostly consume a variety of food sources, including zooplankton, aquatic insects, and crustaceans. The advances in metagenomic sequencing technologies have made it possible to examine gut bacteria by examining hypervariable areas of 16S rDNA for prokaryotes and 18S for eukaryotes through cloning and transferring biologically produced DNA into a bacterial host. In recent times, significant attention has been directed towards nutritional manipulation and the modification of gut microbiota to align with the requirements of aquaculture, all the while aiming to preserve the health and welfare of the host. This paper intends to review the gut content and feeding behavior of Pangasius sp. that will be contributed to the local fish farmer for their breeding and production of high-quality P. nasutus in a short period of time.
Downloads
Alikunhi K.H. (1957). Fish culture in India. Farmers Bulletin of Indian Council of Agricultural Research, 20: 1-144.
Baharuddin H., Rizman-Idid M., Muniandy S., Zakaria M. (2014). The Occurrence of Pangasius polyuranodon Bleeker, 1852 (Teleostei: Pangasiidae) in Peninsular Malaysia with Remarks on the Comparative Morphology with Pseudolais micronemus (Bleeker, 1847). Sains Malaysiana, 43: 1707-1714.
Balca?zar J.L., Vendrell D., de Blas I., Ruiz-Zarzuela I., Girone?s O., Muzquiz J.L. (2006). Immune modulation by probiotic strains: Quantification of phagocytosis of Aeromonas salmonicida by leukocytes isolated from gut of rainbow trout (Oncorhynchus mykiss) using a radio labelling assay. Comparative Immunology Microbiology Infectious Diseases, 29(5): 335-43.
Baldo L., Riera J.L., Tooming-Klunderud A., Alba M.M., Salzburger W. (2015). Gut microbiota dynamics during dietary shift in eastern African cichlid fishes. PLoS ONE, 10(5).
Bandyopadhyay P., Mishra S., Sarkar B., Swain S.K., Pal A., Tripathy P.P., Ojha S.K. (2015). Dietary Saccharomyces cerevisiae boosts growth and immunity of Indian Major Carps Labeo rohita (Hamilton.) juveniles. Indian Journal of Microbiology, 55(1): 81-87.
Bates J.M., Mittge E., Kuhlman J., Baden K.N., Cheesman S.E., Guillemin K. (2006). Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Developmental Biology, 297: 374-386.
Baumgartner G., Nakatani K., Gomes L., Bialetzki A., Sanches P. (2004). Identification of spawning sites and natural nurseries of fishes in the upper Paraná River, Brazil. Environmental Biology of Fishes, 71(2): 115-125.
Begum M.A., Punom N.J., Eshik M.M.E., Begum M.K., Khan T., Saha M.L., Rahman M.S. (2020). Pathogenic gut microbiota associated with striped catfish, Pangasianodon hypophthalmus cultured in Bangladesh and their antibiotic sensitivity pattern. Dhaka University Journal of Biological Sciences, 29(1): 61-73.
Belton B., Karim M., Thilsted S., Murshed-E-Jahan K., Collis W., Phillips M. (2011). Review of aquaculture and fish consumption in Bangladesh. In: Studies and reviews, The World Fish Center. 53 p.
Bibby K., Viau E., Peccia J. (2011). Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Letters in Applied Microbiology, 52: 386-392.
Bleeker P. (1846). Siluroideorum bataviensium species nuperrime detectae. Natuur Geneeskunde Archives Nederland, 3: 284-293.
Bleeker P. (1847). Nieuwe bijdrage tot de kennis der Siluroiden van Java. Verhandelingen Bataviaasch Genootschap, 21: 1-12.
Bleeker P. (1852). Zesde bijdrage tot de kennis der ichthyologische fauna van Borneo. Visschen van Pamangkat, Bandjermassing, Braboekarta en Sampit. Natuur Tijdschrift NederlaIndsch, 3: 407-442.
Bleeker P. (1858). Zesde bijdrage tot de kennis der vischfauna van Sumatra. Visschen van Padang, Troessan, Priaman, Sibogha en Palembang. Acta Societiarum Scientiarum Indo-neerlandicae, 3: 1-50.
Bleeker P. (1863). Description de trois espèces nouvelles de Siluroïdes de l’Inde archipélagique. Verslagen Akademie Amsterdam, 15: 70-76.
Browdy C. (1998). Recent developments in penaeid broodstock and seed production technologies: improving the outlook for superior captive stocks. Aquaculture, 164: 3-21.
Brown-Peterson N.J., Krasnec M., Takeshita R., Ryan C.N., Griffitt K.J., Lay C.R., Mayer G.D., Bayha K.M., Hawkins W.E., Lipton I., Morris J.M., Griffitt R.J. (2015). A multiple endpoint analysis of the effects of chronic exposure to sediment contaminated with Deepwater Horizon oil on juvenile Southern flounder and their associated microbiomes. Aquatic Toxicology, 165: 197-209.
Chakma S., Rahman M.A., Siddik M.A.B., Hoque M.S., Islam S.M.M., Vatsos I.N. (2022). Nutritional Profiling of Wild (Pangasius pangasius) and Farmed (Pangasius hypophthalmus) Pangasius Catfish with Implications to Human Health. Fishes, 7(6): 309.
Chatchavalvanich K., Marcos R., Poonpirom J., Thongpan A., Rocha E. (2006). Histology of the digestive tract of the freshwater stingray Himantura ignifier Compagno and Roberts, (Elasmobranchii, Dasyatidae). Anatomy and Embryology, 211: 507-518.
Chipps S.R., Garvey J.E. (2007). Assessment of food habits and feeding patterns. In: C.S. Guy, Brown M.L. (Eds.). Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Bethesda. pp: 473- 514.
Chondar S.L. (1999). Biology of Finfish and Shellfish. SCSC Publishers, India. pp: 1-514.
Clark G.W., Ackerman S.H., Tillier E.R., Gatti D.L. (2014). Multidimensional mutual information methods for the analysis of covariation in multiple sequence alignments. BMC Bioinformatics, 15: 157.
Clarke K.R., Gorley R.N. (2015). Getting started with PRIMER v7. PRIMER-E: Plymouth, Plymouth Marine Laboratory. Department of Fisheries. 2017. Annual Fisheries Statistics. Available from http://www.dof. gov.my.
Clarke K.R., Somerfield P.J., Gorley R.N. (2008). Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. Journal of Experimental Marine Biology and Ecology, 366(1-2): 56-69.
Colston T.J, Jackson C.R. (2016). Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Molecular Ecology, 25(16): 3776-800.
David A. (1963). Fishery biology of the Schilbeid catfish, Pangasius pangasius (Hamilton) and its utility and propagation in culture ponds. Indian Journal of Fisheries, 10: 521-600.
Desai A.R., Links M.G., Collins S.A., Mansfield G.S., Drew M.D., Van Kessel A.G., Hill J.E. (2012). Effects of plant-based diets on the distal gut microbiome of rainbow trout (Oncorhynchus mykiss). Aquaculture, 350-353: 134-142.
Dhayalan A., Velramar B., Govindasamy B., Ramalingam K.R., Dilipkumar A., Pachiappan P. (2022). Isolation of a bacterial strain from the gut of the fish, Systomus sarana, identification of the isolated strain, optimized production of its protease, the enzyme purification, and partial structural characterization. Journal of Genetic Engineering and Biotechnology, 20(1).
Divya K.R., Isamma A., Ramasubramanian V., Sureshkumar S., Arunjith T.S. (2012). Colonization of probiotic bacteria and its impact on ornamental fish Puntius conchonius. Journal of Environmental Biology, 33(3): 551-5.
Eichmiller J.J., Hamilton M.J., Staley C., Sadowsky M.J., Sorensen P.W. (2016). Environment shapes the fecal microbiome of invasive carp species. Microbiome, 4: 44.
Ellerbroek L., Johne R. (2012). PCR inhibitors—occurrence, properties and removal. Journal of Applied Microbiology, 113: 1014-1026.
Erzini K., Gonçalves J.M.S., Bentes L., Lino P.G. (1997). Fish mouth dimensions and size selectivity in a Portuguese longline fishery. Journal of Applied Ichthyology, 13(1): 41-44.
Estruch G., Collado M.C., Penaranda D.S., Tomas Vidal A., Jover Cerda M., Perez Mart?nez G., Martines-Llorens S. (2015). Impact of fishmeal replacement in diets for gilthead sea bream (Sparus aurata) on the gastrointestinal microbiota determined by pyrosequencing the 16S rRNA Gene. PloS ONE, 10(8): e0136389.
European Food Safety Authority. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) (2010). Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol; European Food Safety Authority: Parma, Italy. 1461 p.
FAO. Fishery and Aquaculture Statistics. Global Production by Production Source (2020). 1950-2018 (FishtatJ) [Online]. Rome: FAO Fisheries and Aquaculture Department; www.fao.org/fishery /statistics/software/fishtatj/en. Accessed February 22, 2021.
Ferraris C.J. (2007). Checklist of catfishes, recent and fossil (Osteichthyes: Siluriformes), and catalogue of Silutiform primary types. Zootaxa, 1418(1): 628.
Froese R., Pauly D. (2019). FishBase: Species list: World Wide Web electronic publication.
Froese R., Pauly D. (2018). Pangasius nasutus Bleeker, 1863. FishBase. Available: https://www.fishbase.de/ summary/Pangasius-nasutus.html (August 2018).
Froese R., Pauly D. (2021). Pangasius nasutus summary page. FishBase. Retrieved December 2021, from https://www.fishbase.de/summary/pangasius-nasutus. html.
Fuller R. (1989). Probiotics in man and animals. Journal of Applied Bacteriology, 66: 365-78.
German D.P., Horn M.H. (2006). Gut length and mass in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Marine Biology, 148: 1123-1134.
Ghanbari M., Kneifel W., Domig K.J. (2015). A new view of the fish gut microbiome: Advances from next-generation sequencing. Aquaculture, 448: 464-475.
Ghani A.A., Chang C.K., Leow C.S., Zakaria N.A. (2012). Sungai Pahang digital flood mapping: 2007 flood. International Journal of River Basin Management, 10(2): 139-148.
Gibson G.R., Roberfroid M.B. (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition, 125: 1401-1412.
Gomez G.D., Balcazar J.L. (2008). A review on the interactions between gut microbiota and innate immunity of fish. Federal European Microbiology Societies Immunology and Medical Microbiology, 52(2): 145-154.
Gupta S. (2016). Pangasius pangasius (Hamilton, 1822), a threatened fish of Indian Subcontinent. Journal of Aquaculture Research and Development, 07(02): 2-3.
Gustiano R., Pouyaud L. (2006). Diversity of Pangasiid catfishes from Sumatra. Bulletin Plasma Nutfah, 12: 83-88.
Gustiano R., Prakoso V.A., Ath-thar M.H.F. (2018). Asian catfish genus Pangasius: Diagnosis and distribution. Indonesian Fisheries Research Journal, 24(2): 99.
Hamdan A.M., El-Sayed A.F., Mahmoud M.M. (2016). Effects of a novel marine probiotic, Lactobacillus plantarum AH 78, on growth performance and immune response of Nile tilapia (Oreochromis niloticus). Journal of Applied Microbiology, 120(4): 1061-1073.
Hansen G., Olafsen J. (1999). Bacterial interactions in early life stages of marine cold water fish. Microbiology Ecology, 38: 1-26.
Hassan A., Ambak M.A., Samad A.P.A. (2011). Crossbreeding of Pangasionodon hypopthalmus (Sauvage,1878) and Pangasius nasutus (Bleeker, 1863) and Their Larval Development. Journal of Sustainability Science and Management, 6(1): 28-35.
Herre A.W.C.T., Myers G.S. (1937). A contribution to the ichthyology of the Malay Peninsula. Bulletin of the Raffles Museum, 13: 5-75.
Hoseinifar S.H., Ringø E., Masouleh A.S., Esteban M.A. (2016). Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Review Aquaculture, 8: 89-102.
Hugerth L.W., Muller E.E.L., Hu Y.O.O., Leburn L.A.M., Roume H., Lundin D., Wilmes P., Andersson F. (2014). Systematic design of 18S rRNA gene primers for determining eukaryotic diversity in microbial consortia. PLoS ONE, 9: e95567.
Huising M.O., Stolte E., Flik G., Savelkoul H.F.J., Verburg-van Kemenade B.M.L. (2003). CXC chemokines and leukocyte chemotaxis in common carp (Cyprinus carpio L.). Developmental and Comparative Immunology, 27(10): 875-888.
Hungin A.P.S., Mulligan C., Pot B., Whorwell P., Agreus L., Fracasso P., Lionis C., Mendive J., Philippart de Foy J.-M., Rubin G., Winchester C., de Wit N. (2013). Systematic review: Probiotics in the management of lower gastrointestinal symptoms in clinical practice – an evidence-based international guide. Alimentary Pharmacology and Therapeutics, 38(8): 864-886.
Hussin M.H., CheLah N.A. (2020). Heavy metal and water turbidity impact on corroded patin fish cages in Temerloh River, Pahang, Malaysia. International Journal of Engineering and Advanced Technology, 9(3): 674-679.
Hyslop E.J. (1980). Stomach contents analysis: a review of methods and their application. Journal of Fish Biology, 17: 411-429.
Irianto A., Austin B. (2002). Probiotics in aquaculture. Journal of Fish Diseases, 25(11): 633-642.
Ismail S., Kamarudin M.S., Ramezani-Fard E. (2013). Performance of commercial poultry offal meal as fishmeal replacement in the diet of juvenile Malaysian Mahseer, Tor tambroides. Asian Journal of Animal and Veterinary Advances, 8: 284-292.
IUCN. (2013). IUCN Red List of Threatened Species. Version (2013).2. Accessed on 18 March 2014.
Joshua O., Adogbeji P., Bussa N., Campus A., Buss N. (2017). Factors Affecting Feed Intake in Cultured Fish Species, 14: 2697-2709.
Kam Foo Ng (2010). Feeding and swimming behavior of Patin, Pangasius hypopthalmus Larvae Under Dim Light Condition. Universiti Malaysia Sabah (Unpublished Thesis).
Kamler J.F., Pope K.L. (2001). Nonlethal methods of examining fish stomach contents. Reviews in Fisheries Science, 9(1): 1-11.
Karachle P.K., Stergiou K.I. (2008). The effect of season and sex on trophic levels of marine fishes. Journal of Fish Biology, 72(6): 14631487.
Karachle P.K., Stergiou K.I. (2010). Intestine morphometrics: A compilation and analysis of bibliographic data. Acta Ichthyologica et Piscatoria, 40(1): 45-54.
Karpouzi V.S., Stergiou K.I. (2003). The relationships between mouth size and shape and body length for 18 species of marine fishes and their trophic implications. Journal of Fish Biology, 62(6): 1353-1365.
Larsen A.M., Mohammed H.H., Arias C.R. (2014). Characterization of the gut microbiota of three commercially valuable warmwater fish species. Journal of Applied Microbiology, 116: 1396-1404.
Lauzon H.L., Gudmundsdottir S., Petursdottir S., Reynisson E., Steinarsson A., Oddgeirsson M., Biornsdottir R., Gudmundsdottir B.K. (2010). Microbiota of Atlantic cod (Gadus morhua L.) rearing systems at pre-and post-hatch stages and the effect of different treatments. Journal of Applied Microbiology, 109: 1775-1789.
Li J., Ni J., Wang C., Li X., Wu S., Zhang T., Yu Y., Yan Q. (2014). Comparative study on gastrointestinal microbiota of eight fish species with different feeding habits. Journal of Applied Microbiology, 117: 1750-1760.
Li X., Yan Q., Xie S., Hu W., Yu Y., Hu Z. (2013). Gut microbiota contributes to the growth of fast-growing transgenic common carp (Cyprinus carpio L.). PLos One, 8(5): e64577.
Liao H., Pierce C.L., Larscheid J.G. (2001). Empirical assessment of indices of prey importance in the diets of predacious fish. Transaction of the American Fish Society, 130(4): 583-591.
Lim K.K.P., Zakaria-Ismail M. (1995). The occurrence of the catfish Helicophagus waandersii (Pisces: Pangasiidae) in Peninsular Malaysia. Malayan Nature Journal, 49: 37-40.
Liu H., Guo X., Gooneratne R., Lai R., Zeng C., Zhan F. Wang W. (2016). The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Scientific Reports, 6: 1-12.
Liu C.H., Chiu C.H., Wang S.W., Cheng W. (2012). Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish and Shellfish Immunology, 33(4): 699-706.
Liu H., Guo X., Gooneratne R., Lai R., Zeng C., Zhan F., Wang W. (2016). The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Scientific Reports, 6(1).
Mahious A.S., Gatesoupe F.J., Hervi M., Metailler R., Ollevier F. (2006). Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758). Aquaculture International, 14: 219–229.
Malek A., De la Hoz A., Gomez-Villegas W.I., Nowbakht C., Arias C.A. (2019). Lactococcus garvieae, an unusual pathogen in infective endocarditis: case report and review of the literature. BMC Infectious Diseases, 19(1): 301.
Manko P. (2016). Stomach content analysis in freshwater fish feeding ecology. University of Presov. 114 p.
Manning T.S., Gibson G.R. (2004). Prebiotics. Best Practice and Research Clinical Gastroenterology, 18(2): 287-298.
Mansfield G.S., Desai A.R., Nilson S.A., Van Kessel A.G., Drew M.D., Hill J.E. (2010). Characterization of rainbow trout (Oncorhynchus mykiss) intestinal microbiota and inflammatory marker gene expression in a recirculating aquaculture system. Aquaculture, 307: 95-104.
McDonald R., Schreier H.J., Watts J.E. (2012). Phylogenetic analysis of microbial communities in different regions of the gastrointestinal tract in Panaque nigrolineatus, a wood-eating fish. PLoS One, 7: e48018.
MDC. (2015). Official Portal of Maran District Council. Accessed at http://www.mdmaran.gov.my/. 23 February 2015.
Menon M.D., Chacko P.I. (1958). The food and feeding habits of some freshwater fishes of Madras State. Journal of Bombay Natural History Society, 55: 117-124.
Merrifield D.L., Carnevali O. (2014). Probiotic modulation of the gut microbiota of fish. In: D.L. Merrifield, E. Ringø (Eds.), Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics,). Oxford, UK: Wiley Blackwell Publishing. pp: 185-222.
Merrifield D.L., Dimitroglou A., Foey A., Davies S.J., Baker R.T., Bøgwald J., Castex M., Ringo F. (2010b). The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 302: 1-18.
Merrifield D., Bradley G., Harper G., Baker R., Munn C., Davies S. (2009). Assessment of the effects of vegetative and lyophilized Pediococcus acidilactici on growth, feed utilization, intestinal colonization and health parameters of rainbow trout (Oncorhynchus mykiss Walbaum). Aquaculture Nutrition, 17: 73-79.
Merrifield D.L., Harper G.M., Dimitroglou A., Ringã E., Davies S.J. (2009). Possible influence of probiotic adhesion to intestinal mucosa on the activity and morphology of rainbow trout (Oncorhynchus mykiss) enterocytes. Aquaculture Research, 41: 1268-1272.
Meyburgh C.M., Bragg R.R., Boucher C.E. (2017). Lactococcus garvieae: an emerging bacterial pathogen of fish. Diseases Aquatic Organisms, 123(1): 67-79
Michl S.C., Ratten J.M., Beyer M., Hasler M., LaRoche J., Schulz C. (2017). The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures. PLoS One, 12: e0177735.
Miyake S., Ngugi D.K., Stingl U. (2015). Diet strongly influences the gut microbiota of surgeonfishes. Molecular Ecology, 24: 656-672.
Mohideen N.H.R.H., ali?as N.S., Mansur N.N., Hamid T.A. (2023). The Co-isolation of lactic acid bacteria (LAB) and a related pathogenic strain from Pangasius nasutus. International Journal of Life Sciences and Biotechnology, 6(2): 143-154.
Mukai Y., Tuzan A.D., Lim L.S., Yahaya S. (2010). Feeding behavior under dark conditions in larvae of sutchi catfish Pangasianodon hypophthalmus. Fisheries Science, 76(3): 457-461.
Nandi A., Banerjee G., Dan S.K., Ghosh K., Ray A.K. (2018). Evaluation of in vivo probiotic efficiency of Bacillus amyloliquefaciens in Labeo rohita challenged by pathogenic strain of Aeromonas hydrophila MTCC 1739. Probiotics and Antimicrobial Proteins, 10(2): 391-398.
Navarrete P., Mardones P., Opazo R., Espejo R., Romero J. (2008). Oxytetracycline treatment reduces bacterial diversity of intestinal microbiota of Atlantic salmon. Journal of Aquatic Animal Health, 20(3): 177-83.
Nelson JS. (2006). Fishes of the World:4th Edition, John Wiley and Son, Hoboken. 601 p.
Not F., del Campo J., Balague V., de Vargas C., Massana R. (2009). New insights into the diversity of marine picoeukaryotes. PLoS ONE, 4: e7143.
Panigrahi A., Kiron V., Satoh S., Watanabe T. (2010). Probiotic bacteria Lactobacillus rhamnosus influences the blood profile in rainbow trout Oncorhynchus mykiss (Walbaum). Fish Physiology and Biochemistry, 36(4): 969-977.
Perez T., Balcazar J.L., Ruizzarzuela I., Halaihel N., Vendrell D., De Blas I., Muzquiz J.L. (2010). Host-microbiota interactions within the fish intestinal ecosystem. Mucosal Immunology, 3(4): 355-360.
Pirarat N., Pinpimai K., Endo M., Katagiri T., Ponpornpisit A., Chansue N., Maita M. (2011). Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Research Veterinary Science, 91(3): 92-7.
Possemiers S., Grootaert C., Vermeiren J., Gross G., Marzorati M., Verstraete W., de Wiele T. (2009). The intestinal environment in health and disease – recent insights on the potential of intestinal bacteria to influence human health. Current Pharmaceutical Design, 15: 2051-2065.
Prim P., Lawrence J.M. (1975). Utilization of marine plants and their constituents by bacteria isolated from the gut of echinoids (Echinodermata). Marine Biology, 33(2): 167-173.
Rainboth W.J. (1996). Fishes of the Cambodian Mekong. FAO species identification field guide for fishery purposes. Food and Agriculture Organization, Rome. 265 p.
Rawls J.F., Mahowald M.A., Ley R.E., Gordon J.I. (2006). Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell, 127: 423-433.
Reverter M., Bontemps N., Lecchini D., Banaigs B., Sasal P. (2014). Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture, 433: 50-61.
Rezende C.F., Caramaschi E.P., Mazzoni R. (2008). Fluxo de energia em comunidades aquáticas, com ênfase em sistemas lóticos. Oecologia Brasiliensis, 12(4): 626-639.
Ringø E., Dimitroglou A., Hoseinifar S.H., Davies S.J. (2014). Prebiotics in finfish: An update. In: D. Merrifield, E. Ringø (Eds.), Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics. Wiley-Blackwell Publishing, Oxford, UK. pp: 360-400.
Ringø E., Van Doan H., Lee S.H., Soltani M., Hoseinifar S.H., Harikrishnan R., Song S.K. (2020). Probiotics, lactic acid bacteria and bacilli: interesting supplementation for aquaculture. Journal of Applied Microbiology, 129(1):116-36.
Roberfroid M. (1993). Dietary fibre, inulin and oligofructose: a review comparing their physiological effects. CRC Critical Reviews in Food Science Technology, 33: 103-148.
Roberts T.R., Vidthayanon C. (1991). Revision of the tropical Asian catfish family Pangasiidae with biological observations and descriptions of three new species. Proceedings of the Philadelphia Academy of Natural Sciences, 143: 97-144.
Roeselers G., Mittge E.K., Stephens W.Z., Parichy D.M., Cavanaugh C.M., Guillemin K., Rawls J.F. (2011). Evidence for a core gut microbiota in the zebrafish. The International Society for Microbial Ecology Journal, 5(10): 1595-1608.
Rosario K., Nilsson C., Lim Y.W., Ruan Y., Breitbart M. (2009). Metagenomic analysis of viruses in reclaimed water. Environmental Microbiology, 11: 2806-2820.
Sadeghinezhad J., Rahmati-Holasoo H., Mirzaei A., Mousavi H.E., Zadsar N. (2017). Histomorphological and mucin histochemical study of the alimentary canal of pangas catfish, Pangasius pangasius (Hamilton 1822). International Journal of Aquatic Biology, 5(3): 208-217.
Sahu M.K., Swarnakumar N.S., Sivakumar K., Thangaradjou T., Kannan L. (2008). Probiotics in aquaculture: importance and future perspectives. Indian Journal of Microbiology, 48(3): 299-308.
Sangwan N., Lambert C., Sharma A., Gupta V., Khurana P., Khurana J.P., Sockett R.E., Gilbert J.A., Lal R. (2015). Arsenic rich Himalayan hot spring metagenomics reveal genetically novel predator-prey genotypes. Environmental Microbiology Reports, 7: 812-823.
Schmieder R., Edwards R. (2012). Insights into antibiotic resistance through metagenomic approaches. Future Microbiology, 7: 73-89.
Schulze A., Alabi A.O., Tattersall-Sheldrake A.R., Miller K.M. (2006). Bacterial diversity in a marine hatchery: Balance between pathogenic and potentially probiotic bacterial strains. Aquaculture, 256(1-4): 50-73.
Sengupta S., Homechaudhuri S. (2011). Comparison of trophic niche and digestive enzymes of four species of catfishes of the Punarbhaba River in India. Indian Journal of Fisheries, 58: 79-85.
Siddiqui M.I., Khan M.A., Siddiqui M.W. (2014). Effect of soybean diet: Growth and conversion efficiencies of fingerling of stinging catfish, Heteropneustes fossilis (Bloch). Journal of King Saud University - Science, 26(2): 83-87.
Smith C.C., Snowberg L.K., Gregory Caporaso J., Knight R., Bolnick D.I. (2015). Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. The International Society for Microbial Ecology Journal, 9(11): 2515-2526.
Snovsky G., Golani D. (2012). The occurrence of an aquarium escapee, Pangasius hypophthalmus (Sauvage, 1878), (Osteichthys, Siluriformes, Pangasiidae) in Lake Kinneret (Sea of Galilee), Israel. BioInvasions Records, 1(2): 101-103.
Soltani M., Ghosh K., Hoseinifar S.H., Kumar V., Lymbery A.J., Roy S., Ringo E. (2019). Genus Bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science and Aquaculture, 27(3): 331-79.
Star B., Haverkamp T.H., Jentoft S., Jakobsen K.S. (2013). Next generation sequencing shows high variation of the intestinal microbial species composition in Atlantic cod caught at a single location. BioMed Central Microbiology, 13: 248.
Subasinghe R.P. (2005). Epidemiological approach to aquatic animal health management: opportunities and challenges for developing countries to increase aquatic production through aquaculture. Preventive Veterinary Medicine, 67(2-3): 117-124.
Sullam K.E., Essinger S.D., Lozupone C.A., O’Connor M.P., Rosen G.L., Knight R., Kilham S.S., Russel J.A. (2012). Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis, 21: 3363-3378.
Syazwani N. (2020). Harga RM339.20 Sekilogram, Tips Dan Potensi Menternak Ikan Patin Air Tawar – Rentas Asia. Rentas Asia. Available https://rentas.asia/harga-rm339-20-sekilogram-tips-dan-potensi-menternak-ikan-patin-air-tawar/.
Teplitski M., Wright A.C., Lorca G. (2009). Biological approaches for controlling shellfish-associated pathogens. Current Opinion in Biotechnology, 20: 185-190.
Thy H.T.T., Tri N.N., Quy O.M., Fotedar R., Kannika K., Unajak S., Areechon N. (2017). Effects of the dietary supplementation of mixed probiotic spores of Bacillus amyloliquefaciens 54A, and Bacillus pumilus 47B on growth, innate immunity and stress responses of striped catfish (Pangasianodon hypophthalmus). Fish and Shellfish Immunology, 60: 391-399.
Tweedie M.W.F. (1936). A list of the fishes in the collection of the Raffles Museum. Bulletin of the Raffles Museum, 12: 16-28.
Verschuere L., Rombaut G., Sorgeloos P., Verstraete W. (2000). Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews, 64: 655-671.
Vidthayanon C., Ng H.H. (2020). Pangasius nasutus. The IUCN red list of threatened species (2020): e.T180981A89815740.
Volkoff H., Peter R.E. (2006). Feeding behavior of fish and its control. Zebrafish, 3(2): 131-140.
Vu N., Huynh T. (2020). Optimized live feed regime significantly improves growth performance and survival rate for early life history stages of Pangasius catfish (Pangasianodon hypophthalmus). Fishes, 5(3): 20.
Wang D., Yao L., Yu J., Chen P., Hu R. (2021). Response to environmental factors of spawning ground in the Pearl River Estuary, China. Journal of Marine Science and Engineering, 9(7): 763.
Ward N.L., Steven B., Penn K., Methe B.A., Detrich W.H. (2009). Characterization of the intestinal microbiota of two Antarctic notothenioid fish species. Extremophiles, 13: 679-685.
Watanabe K., Teramoto M., Futamata H., Harayama S. (1998). Molecular detection, isolation, and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Applied and Environmental Microbiology, 64(11): 4396-4402.
Waters D.S., Kwak T.J., Arnott J.B., Pine W.E. (2004). Evaluation of stomach tubes and gastric lavage for sampling diets from blue catfish and flathead catfish. North American Journal of Fisheries Management, 24(1): 258-261.
Waycott B. (2015). Pangasius farming: water quality and biosecurity. Pangasius Farming: An Overview. The Fish Site. Available https://thefishsite.com/articles /pangasius-farming-an-overview
Wu Z.Q., Jiang C., Ling F., Wang G.X. (2015). Effects of dietary supplementation of intestinal autochthonous bacteria on the innate immunity and disease resistance of grass carp (Ctenopharyngodon idellus). Aquaculture, 438: 105-114.
Wuertz S., Schroeder A., Wanka K.M. (2021). Probiotics in fish nutrition—Long-Standing household remedy or native nutraceuticals? Water, 13(10): 1348.
Yan Q., Van Der Gast CJ., Yu Y. (2012). Bacterial community assembly and turnover within the intestines of developing zebrafish. Plos One, 7(1): e30603.
Yozwiak N.L., Skewes-Cox P., Stenglein M.D., Balmaseda A., Harris E., DeRisi J.L. (2012). Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS ONE, 6: e1485.
Yukgehnaish K., Kumar P., Sivachandran P., Marimuthu K., Arshad A., Paray B.A., Arockiaraj J. (2020). Gut microbiota metagenomics in aquaculture: factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture, 12(3): 1903-1927.
Zhou Q.C., Buentello J.A., Gatlin D.M. (2010). Effects of dietary prebiotics on growth performance, immune response and intestinal morphology of red drum (Sciaenops ocellatus). Aquaculture, 309(1-4): 253-257.
Copyright (c) 2023 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.