High-resolution microscopic visualization of mitochondrial damage under oxidative stress in zebrafish, Danio rerio
Downloads
Mitochondria is the major source of ROS which is neutralized by antioxidant enzymes. However, if there is an imbalance between the prooxidants and the antioxidants, then mitochondrial oxidative stress may occur. This is one of the main reasons for mitochondrial damage and dysfunction. The present study attempts to understand whether environmental stressors like hypoxia and acidic ambiances induce oxidative stress in zebrafish, Danio rerio. The enhanced production of MDA clearly states that the zebrafish skeletal muscle and liver tissues undergo oxidative stress when subjected to environmental stressors. Further, the study also aims to explore the mitochondrial biogenesis in skeletal muscle and liver tissues by confocal microscopy visualization through IraZolve-mito staining under oxidative stressed situations. Visualization of mitochondria from skeletal muscle and liver tissue through transmission electron microscopy (TEM) reveals that under oxidative stress, the structure of mitochondria is disorganized leading to reduced mitochondrial functioning and biogenesis. Through microscopic visualization, the study concludes that hypoxia and acidic ambiances can cause remarkable mitochondrial damage in tissues like skeletal muscle and liver.
Downloads
Abdelkhalek N.K.M., Ghazy E.W., Abdel-Daim M.M. (2014). Pharmacodynamic interaction of Spirulina platensis and deltamethrin in freshwater fish Nile tilapia, Oreochromis niloticus: Impact on lipid peroxidation and oxidative stress. Environmental Science and Pollution Research, (22): 3023-3031.
Aust S.D. (1985). Lipid peroxidation. In: R.A. Greenwald (Ed.), Handbook methods for oxygen radical research. CRC Press Revivals, Florida. pp: 203-210.
Bhatti J.S., Bhatti G.K., Reddy P.H. (2017). Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochimica et Biophysica Acta, (1863): 1066-1077.
Bremer K., Kocha K.M., Snider T., Moyes C.D. (2015). Sensing and responding to energetic stress: The role of the 2 AMPK-PGC1?-NRF1 axis in control of mitochondrial biogenesis in. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, (199): 4-12.
Butler I.B., Schoonen M.A.A., Rickard D.T. (1994). Removal of dissolved oxygen from water: A comparison of four common techniques. Talanta, (41): 211-215.
Chiu D.KC., Tse K.P.W., Law C.T., Xu IMJ., Lee D., Chen M., Lai R.K.H., Yuen V.W.H., Cheu J.W.S., Ho D.W.H., Wong C.M., Zhang H., Ng I.O.L., Wong C.C.L. (2019). Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. Cell Death and Disease, (10): 1-16.
Chowdhury S., Chatterjee S.K., Bhattacharya S., Maitra S., Saikia S.K. (2020). Acidic ambiance induced post-oxidative stress affects AMPK-PGC1a-SIRT1 axis in the skeletal muscles of zebrafish Danio rerio Hamilton, 1822. Acta Biologica Szegediensis, (64): 191-198.
Dong Y., Xia T., Yu M., Wang L., Song K., Zhang C., Lu K. (2022). Hydroxytyrosol attenuates high-fat-diet-induced oxidative stress, apoptosis and inflammation of blunt snout bream (Megalobrama amblycephala) through its regulation of mitochondrial homeostasis. Fishes, (7): 1-12.
Dutta S.P., Jamir R.P., Basaiawmoit S.P., Alam A. (2016). Effects of N-Nitrosodibutylamine on the liver mitochondria morphology and on the expression of liver mitochondrial membrane surface proteins in mice. International Journal of Pharmacy and Pharmaceutical Sciences, (8): 162-168.
Dutta S.P., Neog K., Alam A. (2021). Transmission electron microscopy of the liver mitochondria of N-Nitrosodibutylamine-treated mice. Microscopy Research and Technique (84): 2832-2836.
Dykstra M.J., Reuss L.E. (1992). Biological electron microscopy: theory, techniques, and troubleshooting. Springer, Berlin. 360 p.
Eze J.I., Anene B.M., Chukwu C.C. (2008). Determination of serum and organ malondialdehyde (MDA) concentration, a lipid peroxidation index, in Trypanosoma brucei-infected rats. Comparative Clinical Pathology, (17): 67-72.
Grant K.A., Raible D.W., Piotrowski T. (2005). Regulation of latent sensory hair cell precursors by glia in the zebrafish lateral line. Neuron, (45): 69-80.
Guo C., Sun L., Chen X., Zhang D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, (8): 2003-2014.
Jiang Y., Wang X., Hu D. (2017). Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, (13): 1153-1162.
Kim J.C., Park G.D., Kim S.H. (2017). Inhibition of oxidative stress by antioxidant supplementation does not limit muscle mitochondrial biogenesis or endurance capacity in rats. The Journal of Nutritional Science and Vitaminology, (63): 277-283.
Lee H.C., Wei Y.H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. International Journal of Biochemistry and Cell Biology, (37): 822-834.
Lu K., Policar T., Song X., Rahimnejad S. (2020). Molecular characterization of PGC-1? (PPAR Gamma Coactivator 1?) and its roles in mitochondrial biogenesis in blunt snout bream (Megalobrama amblycephala). International Journal of Molecular Sciences, (21): 1-13.
Lushchak V.I., Duszenko M., Gospodaryov D.V., Garaschuk O. (2021). Oxidative stress and energy metabolism in the brain: Midlife as a turning point. Antioxidants, (10): 1-19.
McConnell J.M., Petrie L. (2004). Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors. Reproductive Biomedicine Online, (9): 418-424.
Mueller I.A., Grim J.M., Beers J.M., Crockett E.L., O’Brien K.M. (2011). Inter-relationship between mitochondrial function and susceptibility to oxidative stress in red- and white-blooded Antarctic notothenioid fishes. Journal of Experiment Biology, (214): 3732-3741.
O’Brien K.M., Mueller I.A. (2010). The unique mitochondrial form and function of Antarctic Channichthyid icefishes. Integrative and Comparative Biology, (50): 993-1008.
Pung Y.F., Sam W.J., Hardwick J.P., Yin L., Ohanyan V., Logan S., Vincenzo L.D., Chilian W.M. (2013). The role of mitochondrial bioenergetics and reactive oxygen species in coronary collateral growth. American Journal of Physiology-Heart and Circulatory Physiology, (305): 1275-1280.
Sorvina A., Bader C.A., Darby J.R.D., Lock M.C., Soo J.Y., Johnson I.R.D., Caporale C., Voelcker N.H., Stagni S., Massi M., Morrison J.L., Plush S.E., Brooks D.A. (2018). Mitochondrial imaging in live or fxed tissues using a luminescent iridium complex. Scientific Reports, (8): 1-8.
Srivastava B., Reddy P.B. (2017). Lipid peroxidation and DNA damage as biomarkers of pollution induced oxidative stress (OS) in fish. Life Science International Journal, (4): 194-198.
Strobel N.A., Peake J.M., Matsumoto A., Marsh S.A., Coombes J.S., Wadley G.D. (2010). Antioxidant supplementation reduces skeletal muscle mitochondrial biogenesis. Medicine and Science in Sports and Exercise, (1): 1017-1024.
Venditti P., Stefano L.D., Meo S.D. (2013). Mitochondrial metabolism of reactive oxygen species. Mitochondrion, (13): 71-82.
Yoboue E.D., Devin A. (2012). Reactive oxygen species-mediated control of mitochondrial biogenesis. International Journal of Cell Biology, (1): 1-8.
Zou Y.Y., Chen Z.L., Sun C.C., Yang D., Zhou Z.Q., Xiao Q., Peng XY., Tang C.F. (2022). A High-Fat Diet Induces Muscle Mitochondrial Dysfunction and Impairs Swimming Capacity in Zebrafish: A New Model of Sarcopenic Obesity. Nutrients, (14): 1-11.
Copyright (c) 2023 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.