Sublethal toxicity of TiO2 nanoparticles to common carp (Cyprinus carpio, Linnaeus, 1758) under visible light and dark conditions

Mahdi Banaee, Shima Shahafve, Somaye Tahery, Behzad Nemadoost Haghi, Maryam Vaziriyan

Abstract

The objective of this study was to determine the sublethal toxicity of TiO2 nanoparticles (TiO2-NPs) on common carp (Cyprinus carpio) under visible light and dark conditions. Blood sampled was collected after 21 days and biochemical parameters, including glucose, total protein, albumin, globulin, creatinine, triglyceride and cholesterol levels, and aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transferase (GGT), lactate dehydrogenase (LDH), creatine kinase (CK), and alkaline phosphatase (ALP) activities were measured. The results showed that TiO2-NPs is caused a significant effect on blood biochemical parameters of C. carpio. By changing lighting conditions from darkness to light, significant differences were observed in certain blood biochemical parameters, including AST, ALT, LDH, ALP and CK activities, glucose, cholesterol and triglyceride levels in fish exposed to TiO2-NPs under light conditions as compared with fish exposed to TiO2-NPs under dark conditions. Cholesterol and triglyceride levels in fish exposed to 0.0 mg L-1 TiO2-NPs under darkness conditions were significantly higher than the control. The results revealed that toxicity of TiO2-NPs under visible light conditions was more than darkness conditions.

Keywords

TiO2 nanoparticles, Common carp, Biochemical parameters, Photoperiod conditions.

Full Text:

PDF

References

Armelao L.B., Bottaro G., Gasparotto A., Maccato C., Maragno C. (2007). Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology, 18(37): 375709.

Chen H., Hu J., Yang J., Wang Y., Xu H., Jiang Q. (2010). Generation of a fluorescent transgenic zebrafish for detection of environmental estrogens. Aquatic Toxicology, 96: 53-61.

Chen J., Dong X., Zhao J., Tang G. (2009). In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. Journal of Applied Toxicology, 29(4): 330-7.

Chen J., Poon C.-S. (2009). Photocatalytic construction and building materials: From fundamentals to applications. Building and Environment, 44: 1899-1906.

Dodd N.J., Jha A.N. (2009). Titanium dioxide induced cell damage: A proposed role of the carboxyl radical. Mutation Research, 660: 79-82.

Duan Y., Liu H., Zhao J., Liu C., Li Z., Yan J. (2009). The effects of nano-anatase TiO(2) on the activation of lactate dehydrogenase from rat heart. Biological Trace Element Research, 130(2): 162-71.

Faulconnier Y., Bonnet M., Bocquier F., Leroux C., Chilliard Y. (2001). Effects of photoperiod and feeding level on adipose tissue and muscle lipoprotein lipase activity and mRNA level in dry non-pregnant sheep. British Journal of Nutrition, 85(3): 299-306.

Federici G., Shaw B.J., Handy R.D. (2007). Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Aquatic Toxicolology, 84: 415-30.

Fenoglio I., Greco G., Livraghi S., Fubini B. (2009). Non-UV-induced radical reactions at the surface of TiO2 nanoparticles that may trigger toxic responses. Chemistry, 15(18): 4614-4621.

Foster-Swanson A., Swartzentruber M., Roberts P. (1994). Refrence interval studies of the rate-blancked creatinine, Jaffe method on BM /Hitachi Systems in Six U.S. Laboratories (Abstract). Clinical Chemistry, 361.

Griffitt R.J., Hyndman K., Denslow N., Barber D. (2009). Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicological Sciences, 107(2): 404-415.

Gurr J.R., Wang A.S., Chen C.H., Jan K.Y. (2005). Ultrafine titaniumdioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, 213: 66-73 .

Hao L., Wang Z., Xing B. (2009). Effect of sub-acute exposure to TiO2 nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). Journal of Environmental Sciences, 21: 1459-1466.

Johnson A.M., Rohlfs E.M., Silverman L.M. (1999). Proteins. In: C.A. Burtis, E.R. Ashwood (eds.). Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B. Saunders Company. pp: 477-540.

Kaegi R., Ulrich A., Sinnet B., Vonbank R., Wichser A., Zuleeg S. (2008). Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environmental Pollution, 156(2): 233-239.

Koetsem F.V., Geremew T.T., Wallaert E., Verbeken K., der Meeren P.V., Laing G.D. (2015). Fate of engineered nanomaterials in surface water: Factors affecting interactions of Ag and CeO2 nanoparticles with (re)suspended sediments. Ecological Engineering, 80: 140-150.

Lee B.C., Kim K.T., Cho J.G., Lee J.W., Ryu T.K., Yoon J.H. (2012). Oxidative stress in juvenile common carp (Cyprinus carpio) exposed to TiO2 nanoparticles. Molecular and Cellular Toxicology, 8(4): 357-366.

Lei C., Zhang L., Yang K., Zhu L., Lin D. (2016). Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging. Environmental Pollution, 218: 505-512.

Li F., Liang Z., Zheng X., Zhao W., Wu M., Wang Z. (2015). Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquatic Toxicology, 158: 1-13.

Li X., Lenhart J.J. (2012). Aggregation and dissolution of silver nanoparticles in natural surface water. Environmental Science and Technology, 46(10): 5378-5386.

Liu H., Ma L., Zhao J., Liu J., Yan J., Ruan J. (2009). Biochemical toxicity of nano-anatase TiO2 particles in mice. Biological Trace Element Research, 129(1): 170-80.

Lourenço J.F. (2012). Toxicological effects of TiO2 nanoparticles in two freshwater species: Carassius auratus and Corbicula fluminea. Dissertation for obtaining a Master's Degree in Biochemistry, Border University Interior Sciences, 94.

Luft J.R. (2010). Crystal cookery - using high-throughput technologies and the grocery store as a teaching tool. Journal of Applied Crystallography, 43: 1189-1207.

Lumeij J.T., Remple J. D. (1991). Plasma urea, creatinine and uric acid concentrations in relation to feeding in peregrine falcons (Falco peregrinus). Avian Pathology, 20(1): 79-83.

Marie M., Findlay P.A., Thomas L., Adam C.L. (2001). Daily patterns of plasma leptin in sheep: effects of photoperiod and food intake. Journal of Endocrinology, 170(1): 277-86.

Melquiades F.L., Lopes F., Lonni A.G., Oliveira F.M., Duarte J.C. (2008). Titanium dioxide determination in sunscreen by energy dispersive X-ray fluorescence methodology. Analytica Chimica Acta, 613: 135-143.

Moss D.V., Henderson A.R. (1999). Clinical enzymology. In: C.A. Burtis, E.R. Ashwood (eds). Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B. Saunders Company. pp: 617-721.

Nowack B., Bucheli T.D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution, 150(1): 5-22.

Ortlieb M. (2010). White giant or white dwarf?: Particle size distribution measurements of TiO2. G.I.T. Laboratory Journal Europe, 14: 42-43.

Pérez S., Farré M.L., Barceló D. (2009). Analysis, behavior and ecotoxicity of carbon-based nanomaterials in the aquatic environment. Trends in Analytical Chemistry, 28: 820-832.

Prochazka M., Stupavska M., Jerigova M., Velic D. (2012). TiO2 photocatalytic degradation of cholesterol: SIMS study. Surface and Interface Analysis, 45: 22-26.

Reeves J.F., Davies S.J., Dodd N.J., Jha A.N. (2008). Hydroxyl radicals (·OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutation Research, 640:113-122.

Rifai N., Bachorik P.S., Albers J.J. (1999). Lipids, lipoproteins and apolipoproteins. In: C.A. Burtis, E.R. Ashwood (eds.). Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B. Saunders Company. pp: 809-861.

Sacks D.B. (1999). Carbohydrates. In: C.A. Burtis, E.R. Ashwood (eds.). Tietz Textbook of Clinical Chemistry. 3rd ed. Philadelphia: W.B. Saunders Company. pp: 766-785.

Smith C.J., Shaw B.J., Handy R.D. (2007). Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquatic Toxicology, 82(2): 94-109.

Wang J., Zhou G., Chen C., Yu H., Wang T., Ma Y. (2007). Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 168(2): 176-185.

Wu N., Ge Y., Zhou Y., Shen T., Qiang Q., Zhang Q. (2016). Nanosized titanium dioxide resulted in the activation of TGF-β/Smads/p38MAPK pathway in renal inflammation and fibration of mice. Particle and Fibre Toxicology, doi: 10.1002/jbm.a.35678.

Xiong D., Fang T., Yu L., Sima X., Zhu W. (2011). Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409: 1444-1452.

Zhang L., Li J., Yang K., Liu J., Lin D. (2016). Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples. Environmental Pollution, 211: 132-140.

Zou X., Shi J., Zhang H. (2014). Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks? Aquatic Toxicology, 154: 168-175.

Refbacks

  • There are currently no refbacks.