Life cycle and otolith morphological parameters of black scorpionfish, Scorpaena porcus (Scorpaenidae) in the Crimean waters of the Black Sea
Downloads
Sex, size and age structure, growth, mortality, and some of the morphological parameters of the otoliths of the black scorpionfish, Scorpaena porcus collected in the south-western Black Sea waters of the Crimea were analyzed. A total of 500 S. porcus specimens were examined. The total sex ratio differed (1.00:0.67) with the predominance of females. The maximum total length and age of females were estimated to be 26.9 cm and 12 years old, respectively; for males, they were 21.3 cm and 11 years. The growth rate was determined to be sex-specific. The values of the parameters of the Bertalanffy equation were calculated. For females, the asymptotic total length was estimated to be 28.9, weight – 519.7 g, parameter k = 0.10 year-1, to = -2.90; for males, the asymptotic total length was estimated to be 23.2 cm, weight, 226 g, parameter k = 0.16 year-1, to = -2.13. The total, natural, and fishing mortality coefficients for females amount to 0.67, 0.45, and 0.26 year-1, respectively; for males, they are 0.46, 0.30, and 0.13 year-1. The exploitation ratio for females is 0.38, and for males, it is 0.28, corresponding to the low fishing pressure. The relationship between the fish length and the otolith length is isometric, but the relationship between the fish weight and the otolith weight is positively allometric. The Black Sea black scorpionfish differs from the Mediterranean population by their bigger maximum sizes, low growth rate, longer lifespan, and more evident sexual dimorphism.
Downloads
Ba?ç?nar N., Sa?lam H. (2009). Feeding Habits of Black Scorpionfish Scorpaena porcus, in the South-Eastern Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 9: 99-103.
Basusta N., Khan U. (2020). Sexual dimorphism in the otolith shape of shi drum, Umbrina cirrosa (L.), in the eastern Mediterranean Sea: Fish size–otolith size relationships. Journal of Fish Biology, 99: 164-174.
Bertalanffy von L. (1938). A quantitative theory of organic growth (Inquiries on growth laws II). Human Biology, 10: 183-213.
Bradai M., Bouain A. (1988). Croissance lineaire absolue des rascasses (Scorpaena porcus et S. crofa) du golfe de Gabes (Tunisie). Institut National Scientifique et Technique d’ Océanographie et de Pêche, 15: 13-38.
Bostanci D., Yilmaz S., Polat N., Kontas S. (2012). ?skorpit Scorpaena porcus L. 1758’un otolith Biyometri Özellikleri. Karadeniz Fen Bilimleri Dergisi, 3: 59-68.
Bilgin S., Celik S. (2009). Age, growth and reproduction of the black scorpionfish, Scorpaena porcus (Pisces, Scorpaenidae), on the Black Sea coast of Turkey. Journal of Applied Ichthyology, 1-6.
Cadima E. (2003). Fish stock assessment manual. FAO Fish. Tech. Paper ? 393 Rome: UN Food Agric. Org.
Chesnokova I., Sigacheva T., Skuratovskaya E. (2020). Comparative analysis of hepatic biomarkers of black scorpionfish Scorpaena porcus Linnaeus, 1758 from Sevastopol water areas (the Black Sea) with different pollution levels. Water Resources, 47(3): 486-490.
Ferri J., Petri? M., Mati?-Skoko S. (2010). Biometry analysis of the black scorpionfish, Scorpaena porcus (Linnaeus, 1758) from the eastern Adriatic Sea. International Journal of Marine Sciences, 51: 45-53.
Ferri J., Matic-Skoko S. (2021). The Spatial Heterogeneity of the Black Scorpionfish, Scorpaena porcus (Scorpaenidae): Differences in Length, Dietary and Age Compositions. Applied Sciences, 11(24): 11919.
Francis C., Campana S. (2004). Inferring age from otolith measurements: a review and a new approach. Canadian Journal of Fisheries and Aquatic, 83: 103-117.
Gallucci V., Quinn T. (1979). Reparameterizing, fitting, and testing a simple growth model. Transactions of the American Fishery Society, 108: 14-25.
Geffroy B., Wedekind C. (2020). Effects of global warming on sex ratios in fishes. Journal of Fish Biology, 97: 596-606.
Gulland J. (1971). The fish resources of the ocean. Fishing News (Books) Ltd, West Byfleet. 255 p.
Jardas I., Pallaoro A. (1992). Age and growth of black scorpionfish, Scorpaena porcus L., 1758 in the Adriatic Sea. Rapp Comm Mer. Medit, 33: 296.
Kutsyn D., Skuratovskaya E., Chesnokova I. (2019). Age and Growth of the Black Scorpionfish Scorpaena porcus Linnaeus, 1758 (Scorpaeniformes: Scorpaenidae) under Anthropogenic Pressure in the Black Sea. Journal of Ichthyology, 59: 358-365.
Kutsyn D., Skuratovskaya E., Chesnokova I. (2019.) Body Size, Age Structure, Growth, and Maturation of Black Scorpionfish Scorpaena porcus (Scorpaenidae) from Southwestern Crimea (Black Sea). Journal of Ichthyology, 59: 651-656.
Lindmarka M., Audzijonyteb A., Blanchardc J., Gårdmarkd A. (2022). Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming. Global Change Biology, 6239-6253.
Matic-Skoko S., Ferri J., Skeljo F., Bartulovic V., Glavic K., Glamuzinac B. (2011). Age, growth and validation of otolith morphometrics as predictors of age in the forkbeard, Phycis phycis (Gadidae). Fisheries Research, 112: 52-58.
Mahe K., Goascoz N., Dufour J., Iglesias S., Tetard A. (2014). Black scorpionfish Scorpaena porcus (Scorpaenidae): a first record in the eastern English Channel. Marine Biodiversity Records. Marine Biological Association of the United Kingdom. pp: 1-3.
Mesa M., Scarcella G., Grati F., Fabi G. (2010). Age and growth of the black scorpionfish, Scorpaena porcus (Pisces: Scorpaenidae) from artificial structures and natural reefs in the Adriatic Sea. Scientia Marina, 74: 677-685
Metin G., Ilkyaz A. (2008). Use of otolith length and weight in age determination of Poor Cod (Trisopterus minutus Linn. 1758). Turkish Journal of Zoology, 32: 293-297.
Mina M., Klevezal G. (1976). Rost zhivotnykh (The Growth of Animals), Moscow: Nauka. (in Russian)
Nikolskii G. (1969). Theory of fish population dynamics. Oliver and Boyd, Edinburgh. 323 p.
Pashkov A., Shevchenko N., Oven L., Giragosov V., Kruglov M. (1999). Distribution, numbers and principal population indexes of Scorpaena porcus under anthropogenic pollution of the Black Sea. Journal of Ichthyology, 39: 634-641.
Pauly D. (1980). On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES Journal of Marine Science, 39: 175-192.
Pauly D. (1998). Tropical fishes: Patterns and propensities. Journal of Fish Biology, 53: 1-17.
Polin A., Pashkov A., Denisova1 T. (2022). Morphology and fluctuating asymmetry of sagitta otoliths of the black scorpionfish Scorpaena porcus Linnaeus, 1758 (pisces: Scorpaenidae) from the ?aucasian and Crimean shelves of the Black Sea. Aquatic Bioresources and Environment, 5: 83-98.
Ricker W. (1975). Computation and Interpretation of Biological Statistics of Fish Populations. Bulletin - Fisheries Research Board of Canada, 1-382.
?ahin C., Erbay M., Kalayci F., Ceylan Y., Ye?ilçiçek T. (2019). Life history traits of the black scorpionfish (Scorpaena porcus) in Southeastern Black Sea. Turkish Journal of Fisheries and Aquatic Science, 19: 571-584.
Shaltout M., Omstedt A. (2014). Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia, 56(3): 411-443.
Svetovidov A. (1964). Ryby Chernogo morya (Fishes of the Black Sea), Moscow: Nauka. (in Russian)
Trojette M., Fatnassi M., Alava H., Mahouachi N., Chalh A., Quignard J., Trabelsi M. (2014). Applying Sagitta otolith shape in the discrimination of fish populations Scorpaena porcus (Linnaeus, 1758) (Scorpaenidae) in the Tunisian coasts. Cahiers de Biologie Marine, 55: 499-506.
Tuset M., Lombarte J., González J., Pertusa L. (2003). Comparative morphology of the sagittal otolith in Serranus spp. Journal of Fish Biology, 63: 1491-1504.
Ünsal N., Oral M. (1996). A study on the growth and reproduction of black scorpionfish (Scorpaena porcus Linnaeus, 1758) in the Sea of Marmara. Turkish Journal of Zoology, 20: 303-308.
Verberk W., Atkinson D., Hoefnagel K., Hirst A., Horne C., Siepel H. (2020). Shrinking body sizes in response to warming: explanations for the temperature-size rule with special emphasis on the role of oxygen. Biological Reviews, 92(2): 815-829.
Yedier S., Bostanci D. (2021). Molecular and otolith shape analyses of Scorpaena spp. in the Turkish seas. Turkish Journal of Zoology, 46: 78-92.
Yedier S., Bostanci D., Kontas S., Aapaydin M., Polat N. (2019). Comparison of otolith morphology of invasive big-scale sand smelt (Atherina boyeri) from natural and artificial lakes in Turkey. Iranian Journal of Fisheries Sciences, 62: 635-645.
Copyright (c) 2024 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.