Fungal biodiversity of water and sediments in some aquatic systems in Basrah Province and their capabilities to degrade methyl orange
Downloads
This study investigates the fungal biodiversity of water and sediment samples from some waterbodies and their ability to degrade Methyl orange (M.O.) on a solid medium. Ten fungal genera were isolated, and the genus Aspergillus represented the highest percentage (70%). Sixteen fungal species were isolated that 88% of which (14 species) belonged to anamorphic fungi. Trichoderma sp. showed the highest percentage (40%). Out of the 16 isolated fungi, Aspergillus flavus, A. niger, and A. terreus showed the best result for decolourising M.O. on a solid medium potato dextrose agar. These fungi isolates were selected to test their ability to biodegrade M.O. in a liquid medium supplemented with 50 mg.L-1 M.O. as the sole carbon source. Based on the results, after 7 days of incubation, A. niger degraded 14% of M.O., while A. flavus and A. terreus degraded 12% of the dye.
Downloads
Akansha K., Chakraborty D., Sachan S.G. (2019). Decolorization and degradation of methyl orange by Bacillus stratosphericus SCA1007. Biocatalysis and Agricultural Biotechnology, 18: 101044.
Al-Daamy A.A.H., Ahmed A., Mohammad G. (2018). Antimicrobial agents production by fungi isolates from the whisperers. Scientific Journal of Medical Research, 2(06): 104-107.
Al-Jawhari I.F.H., AL-Mansor K.J. (2017). Biological removal of Malachite green and Congo red by some filamentous fungi. International Journal of Environment, Agriculture and Biotechnology, 2(2): 723-731.
Altaee M.S., Al-Dossary M.A.A. (2021). Evaluation of the enzymatic activity of some fungi isolated from plastic contaminated soils and their LDPE biodegradation ability. Marsh Bulletin, 16(2): 123-134.
Bagewadi Z.K., Mulla S.I., Ninnekar H.Z. (2017). Purification and immobilization of laccase from Trichoderma harzianum strain HZN10 and its application in dye decolorization. Journal of Genetic Engineering and Biotechnology, 15(1): 139-150.
Balcázar-López E., Méndez-Lorenzo L.H., Batista-García R.A., Esquivel-Naranjo U., Ayala M., Kumar V.V., Savary O., Cabana H., Herrera-Estrella A., Folch-Mallol J.L. (2016). Xenobiotic compounds degradation by heterologous expression of a Trametes sanguineus laccase in Trichoderma atroviride. PLoS ONE, 11(2).
Buratti S., Girometta C.E., Baiguera R.M., Barucco B., Bernardi M., De Girolamo G., Malgaretti M., Oliva D., Picco A.M., Savino E. (2022). Fungal diversity in two wastewater treatment plants in North Italy. Microorganisms, 10: 1096.
Carolin C.F., Kumar P.S., Joshiba, G.J. (2021). Sustainable approach to decolourize methyl orange dye from aqueous solution using novel bacterial strain and its metabolites characterization. Clean Technologies and Environmental Policy, 23: 173-181.
Chatterjee S., Dey S., Sarma M., Chaudhuri P., Das S. (2020). Biodegradation of Congo red by manglicolous filamentous fungus Aspergillus flavus JKSC-7 Isolated from Indian Sundabaran mangrove ecosystem. Applied Biochemistry and Microbiology, 56(6): 708-717.
De Hoog G.S., Guarro J. (1995). Atlas of clinical fungi. CBS Netherland and universitat Rovira Virgili. Spain, 720 p.
Dharshini R.P., Sumathy V.J.H. (2014). Biodegradation of textile azo dyes using fungi. International Journal of Medicine and Pharmaceutical Research, 2(3):611-621.
Guarro J., Gene J., Stachigel A.M., Figueras J. (2012). Atlas of soil Ascomycetes, CBS-KNAW fungal biodiversity center Utrecht. Netherland. 997 p.
Guo G., Hao J., Tian F., Liu C., Ding K., Zhang C., Yang F., Xu J. (2020). Decolorization of metanil yellow G by a halophilic alkalithermophilic bacterial consortium. Bioresource Technology, 316: 123923.
Hashem R.A., Samir R., Essam T.M., Ali A.E., Amin M.A. (2018). Optimization and enhancement of textile reactive Remazol black B decolorization and detoxification by environmentally isolated pH tolerant Pseudomonas aeruginosa KY284155. AMB Express, 8: 83.
Hawksworth D.L., Lücking R. (2017). Fungal diversity revisited: 2.2 to 3.8 million species. Microbiology Spectrum, 5(4).
He X.L., Song C., Li Y.Y., Wang N., Xu L., Han X., Wei D.S. (2018). Efficient degradation of azo dyes by a newly isolated fungus Trichoderma tomentosum under non-sterile conditions. Ecotoxicology and Environmental Safety, 150: 232-239.
Jayasinghe C., Imtiaj A., Lee G.W., Im K.H., Hur H., Yang H.S, Lee T.S. (2008). Degradation of three aromatic dyes by white rot fungi and the production of ligninolytic enzymes. Mycobiology 36: 114-120.
Kamal I.M., Abdeltawab N.F., Ragab Y.M., Farag M.A., Ramadan M.A. (2022). Biodegradation, decolorization, and detoxification of di-azo dye direct red 81 by halotolerant, alkali-thermo-tolerant bacterial mixed cultures. Microorganisms, 10: 994.
Khalaf M.A. (2008). Biosorption of reactive dye from textile waste water by non-viable biomass of Aspergillus niger and Spirogyra sp. Bioresource Technology 99(14): 6631-6634.
Khalid T., Fatima A., Shafiq A., Javed S., Nadeem S.G. (2016). Microbial decolorization of textile effluent. RADS Journal of Biological Research and Applied Sciences, 7(1): 28-34.
Lima L.M., Okamoto D.N., Passarini M.R., Gonçalves S.S., Goldman G.H., Silveira M.A., Ramos P.L., Cruz J.B., Juliano M., Marcondes M.F.M., Vasconcellos S. (2021). Enzymatic diversity of filamentous fungi isolated from forest soil incremented by sugar cane solid waste. Environmental Technology, 3: 1-10.
Liu Sm Xu X., Kang Y., Xiao Y., Liu H. (2020). Degradation and detoxification of azo dyes with recombinant ligninolytic enzymes from Aspergillus sp. with secretory overexpression in Pichia pastoris. Royal Society Open Science, 7: 200688.
Minati M.H., Mohammed-Ameen M.K. (2020). Fungal diversity of winter wheat parts, seed and field soil in Iraq, Basra Province. Materials Science and Engineering 928(6): 1-18.
Mirhendi H., Makiumura K., Khoramizadeh M., Yamagushi H. (2006). A one?enzyme PCR?RFLP assay for identification of six medically important Candida species. Japanese Journal of Medical Mycology, 47: 225-229.
Pinheiro L.R.S., Gradíssimo D.G., Xavier L.P., Santos A.V. (2022). Degradation of azo dyes: Bacterial potential for bioremediation. Sustainability, 14(3): 1510.
Purnomo A., Andyani N., Nawfa R., Putra S. (2020). Fenton reaction involvement on methyl orange biodegradation by brown-rot fungus Gloeophyllum trabeum. AIP Conference Proceedings, 2237(1): 020002.
Raja H.A., Miller A.N., Pearce C.J., Oberlies N.H. (2017). Fungal identification using molecular tools: A primer for the natural products research community. Journal of Natural Products, 80(3): 756-770.
Saramanda G., Kaparapu J. (2017). Impact of pesticides on selected soil mycoflora. International Journal of Advanced Research in Biological Sciences, 4(1): 105-112.
Selvaraj V., Swarna K.T., Mansiya C., Alagar M. (2021). An over review on recently developed techniques, mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure, 1224: 129-195.
Sharma A., Aggarwal N.K., Yadav A. (2017). Isolation and screening of lignolytic fungi from various ecological niches. Universal Journal of Microbiology Research, 5(2): 25-34.
Shi Y., Yang Z., Xing L., Zhou J., Ren J., Ming L, Hua Z., Li X., Zhang D. (2021). Ethanol as an efficient cosubstrate for the biodegradation of azo dyes by Providencia rettgeri: Mechanistic analysis based on kinetics, pathways and genomics. Bioresource Technology, 319: 124117.
Singh A., Shukla N., Kabadwal B., Tewari A., Kumar J. (2018). Review on plant-Trichoderma-pathogen interaction. International Journal of Current Microbiology and Applied Sciences, 7: 2382-2397.
Singh L., Singh V.P. (2010). Microbial degradation and decolourization of dyes in semi-solid medium by the fungus-Trichoderma harzianum. Environment and We an International Journal of Science and Technology, 5(3): 147-53.
Tian X., Yang T., He J., Chu Q., Jia X., Huang J. (2017). Fungal community and cellulose-degrading genes in the composting process of Chinese medicinal herbal residues. Bioresource Technology, 241: 374-383.
Varjani S., Rakholiya P., Yong Ng H., You S., Teixeira J.A. (2020). Microbial Degradation of Dyes: An overview. Bioresource Technology, 314: 123728.
Vasdev K. (2011). Decolorization of triphenylmethane dyes by six white-rot fungi isolated from nature. Journal of Bioremediation and Biodegradation, 2: 128.
Watanabe T. (2010). Pictorial atlas of soil and seed fungi morphologies of cultured fungi and key to species, Third Edition. Boca Raton: CRC Press. 426 p.
Wicklow D.T., Wittingham C. (1974). Soil micro fungal changes among the profiles of disturbed conifer hard wood forest. Ecology, 55: 3-16.
Wu B., Hussain M., Zhang W.W., Stadler M. (2019). Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. International Journal on Fungal Biology, 10(3): 127-140.
Wu K.Y., Liu Y., Mo L., Sun Z.W., Liu Z.Y., Chen Z.H., Huang R.M., Zhang X. (2022). Effects of environmental factors on fungal diversity and composition in coastal sediments from Guangdong, China. SSRN Electronic Journal, 1-38.
Zhang S., Fan F., Meng F. (2020). Seasonality and community separation of fungi in a municipal wastewater treatment plant. Applied and Environmental Microbiology Journal, 86(18): e00191-20.
Zhuang M., Sanganyado E., Zhang X., Xu L., Zhu J., Liu W., Son H. (2020). Azo dye degrading bacteria tolerant to extreme conditions inhabit nearshore ecosystems: optimization and degradation pathways. Journal of Environmental Management, 261: 110222.
Ziaee A., Zia M., Goli M. (2018). Identification of saprophytic and allergenic fungi in indoor and outdoor environments. Environmental Monitoring and Assessment, 190: 574.
Copyright (c) 2023 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.