Effects of carbon nanotubes (CNTs) nano-materials on the giant freshwater prawn (Macrobrachium rosenbergii, de Man, 1879) in laboratory conditions
Downloads
Carbon nanotubes (CNTs) are the most widely studied class of engineered nanoparticles due to carbon’s unique hybridization properties and they are extensively used in several fields depending on their morphology, particle size, exposure time, and concentration. These nanoparticles are released into the aquatic ecosystems through domestic and industrial wastewater and induce adverse effects on the aquatic organisms. The present study evaluated the toxicity effects of CNTs nano-particles on crustacean hyperglycemic hormone (CHH) hormone release, hematology factors, and anti-oxidative enzymes’ activity of Macrobrachium rosenbergii. This research was conducted in five treatments, including 0 (control), 5, 10, 20, and 30 mg/L CNT nanoparticles in triplicate for 28 days. The experimental units consisted of a 300-l recirculating system, stocked with, 10 prawns. The results indicated that M. rosenbergii reproductive performance, anti-oxidant enzyme activities, hematology parameters and CHH hormone release, survival rate, and growth performance were strongly affected by CNT NMs toxicity. The findings showed that SOD and CAT antioxidant enzymes activities have positive responses to the CNTS NMs in the experimental treatments and these NMs showed dose-dependent effects on the enzyme's activities. Also, CHH hormone in the experimental treatments showed significantly higher than the control treatment. The results of this work illustrate that because of the settling behavior of NMs, M. rosenbergii as a freshwater benthic decapod crustacean is an appropriate biological model to study NMs toxicity and also a suitable bio-monitor for NMs contaminations in freshwater aquatic environments.
Downloads
Amjad S., Sharma A.K., Serajuddin M. (2018). Toxicity assessment of cypermethrin nanoparticles in Channa punctatus: Behavioral response, micronuclei induction and enzyme alteration. Regulatory Toxicology and Pharmacology, 100: 127-133.
Aqel A., El-Nour K.M.M.A., Ammar R.A.A., Al-Warthan A. (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry, 5: 1-23.
Ashori A., Rafieyan F., Kian F., Jonoobi M., Rezaei Tavabe K. (2019). Effect of cellulose nanocrystals on performance of polyethersulfone nanocomposite membranes using electrospinning technique. Polymer Composites, 40: 835-841.
Bonner J.C. (2007). Lung Fibrotic Responses to Particle Exposure. Toxicologic Pathology, 35: 148-153.
Chung J.S., Zmora N., Katayama H., Tsutsui N. (2010). Crustacean hyperglycemic hormone (CHH) neuropeptides family: Functions, titer, and binding to target tissues. General and Comparative Endocrinology, 166: 447-454.
Cimbaluk G.V., Ramsdorf W.A., Perussolo M.C., Santos H.K.F., Da Silva De Assis H.C., Schnitzler M.C., Schnitzler D.C., Carneiro P.G., Cestari M.M. (2018). Evaluation of multiwalled carbon nanotubes toxicity in two fish species. Ecotoxicology and Environmental Safety, 150: 215-223.
Du J., Zhu H., Ye M., Ma Y. (2019). Macrobrachium rosenbergii Cu/Zn superoxide dismutase (Cu/Zn SOD) expressed in Saccharomyces cerevisiae and evaluation of the immune function to Vibrio parahaemolyticus. Fish & Shellfish Immunology, 90: 363-375.
He H., Pham-Huy L.A., Dramou P., Xiao D., Zuo P., Pham-Huy C. (2013). Carbon nanotubes: applications in pharmacy and medicine. BioMed Research International, 2013: 578290-578290.
Helland A., Wick P., Koehler A., Schmid K., Som C. (2007). Reviewing the environmental and human health knowledge base of carbon nanotubes. Environmental Health Perspectives, 115: 1125-1131.
Javanmardi S., Rezaei Tavabe K., Moradi S., Ghafari Farsani H. (2018). Effects of Various Sodium Adsorption Ratio (SAR) at Brood-Stock Tank Water on Reproductive Performance of the Female Freshwater Prawn (Macrobrachium rosenbergii). Journal of Fisheries (Iranian Journal of Natural Resources), 71: 52-61.
Javanmardi S., Rezaei Tavabe K., Rosentrater K.A., Solgi M., Bahadori R. (2020). Effects of different levels of vitamin B6 in tank water on the Nile tilapia (Oreochromis niloticus): growth performance, blood biochemical parameters, intestine and liver histology, and intestinal enzyme activity. Fish Physiology and Biochemistry, 46: 1909-1920.
Lee J.W., Choi Y.C., Kim R., Lee S.K. (2015). Multiwall carbon nanotube-induced apoptosis and antioxidant gene expression in the gills, liver, and intestine of Oryzias latipes. BioMed Research International, 2015: 485343-485343.
Leigh O., Antoinette O.N. (1997). Use of a clinical cell flow cytometer for differential counts of prawn Penaeus monodon haemocytes. Diseases of aquatic organisms, 31: 147-153.
Levenson J., Byrne J.H., Eskin A. (1999). Levels of serotonin in the hemolymph of aplysia are modulated by light/dark cycles and sensitization training. The Journal of Neuroscience, 19: 8094-8103.
Liu Y., Wang S., Wang Z., Ye N., Fang H., Wang D. (2018). TiO?, SiO? and ZrO? Nanoparticles Synergistically Provoke Cellular Oxidative Damage in Freshwater Microalgae. Nanomaterials (Basel), 8: 1-12.
Lorenzon S., Edomi P., Giulianini P.G., Mettulio R., Ferrero E.A. (2004). Variation of crustacean hyperglycemic hormone (cHH) level in the eyestalk and haemolymph of the shrimp Palaemon elegans following stress. Journal of Experimental Biology, 207: 4205-4213.
Lukhele L.P., Mamba B.B., Musee N., Wepener V. (2015). Acute toxicity of double-walled carbon nanotubes to three aquatic organisms. Journal of Nanomaterials, Special issue, 219074
Møller P., Christophersen D.V., Jensen D.M., Kermanizadeh A., Roursgaard M., Jacobsen N.R., Hemmingsen J.G., Danielsen P.H., Cao Y., Jantzen K., Klingberg H., Hersoug L.G., Loft S. (2014). Role of oxidative stress in carbon nanotube-generated health effects. Archives of Toxicology, 88: 1939-1964.
Mwangi J.N., Wang N., Ingersoll C.G., Hardesty D.K., Brunson E.L., Li H., Deng B. (2012). Toxicity of carbon nanotubes to freshwater aquatic invertebrates. Environmental Toxicology and Chemistry, 31: 1823-1830.
Nezhadheydari H., Rezaei Tavabe K., Mirvaghefi A., Heydari A., Frinsko M. (2019). Effects of different concentrations of Fe3O4@ZnO and Fe3O4@CNT magnetic nanoparticles separately and in combination on aquaculture wastewater treatment. Environmental Technology and Innovation, 15: 100414.
Qu X., Alvarez P.J.J., Li Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water Research, 47: 3931-3946.
Rafiee G., Rezaei Tavabe K., Frinsko M., Daniels H., Shoeiry M.M. (2014). Investigation on Influences of Different Brackish Water Sources on Larval Quality and Developmental Indices of Freshwater Prawn (Macrobrachium rosenbergii). Journal of Fisheries, 67: 223-236.
Rafiee G., Tavabe K.R., Frinsko M., Daniels H. (2015). Effects of various sodium adsorption ratio (SAR) mediums on larval performance of the freshwater prawn Macrobrachium rosenbergii (de Man). Aquaculture Research, 46: 725-735.
Reddy P.S., Sainath S.B. (2009). Hyperglycemic hormone in fresh water prawn Macrobrachium rosenbergii: Purification from eyestalk nervous tissue and quantification by ELISA in hemolymph following various stresses. Aquaculture, 286: 290-295.
Rezaei Tavabe K., Malekian A., Afzali A., Taya A. (2017). Biological index and pollution assessment of Damghanroud river in the Semnan province. Desert, 22: 69-75.
Rezaei Tavabe K., Pouryounes Abkenar B., Rafiee G., Frinsko M. (2019). Effects of chronic lead and cadmium exposure on the oriental river prawn (Macrobrachium nipponense) in laboratory conditions. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 221: 21-28.
Rezaei Tavabe K., Rafiee G. (2015). Study on effects of different concentrations of vitamin C and hardness at brood-stock tank water on reproductive indices of freshwater prawn (Macrobrachium rosenbergii) in recirculation system. Journal of Fisheries, 68: 533-544.
Rezaei Tavabe K., Rafiee G. (2016). Effects of various sodium and potassium concentrations mediums on Na/K-Atpase activity and condition indices at different larval stages of Macrobrachium rosenbergii. Journal of Fisheries, 69: 145-154.
Rezaei Tavabe K., Rafiee G., Elhaghi K., Mirvaghefi A., Javanshir A. (2018). Investigation of different treated urban wastewater concentrations effects on blood factors, cortisol hormone, liver and gill tissues of Common carp (Cyprinus carpio). Journal of Aquatic Ecology, 8: 1-13.
Rezaei Tavabe K., Rafiee G., Frinsko M., Daniels H. (2015a). Interactions of different sodium and potassium concentrations on Macrobrachium rosenbergii (de Man) offspring quality parameters. Aquaculture Research, 46: 2615-2627.
Rezaei Tavabe K., Rafiee G., Shoeiry M.M., Houshmandi S., Frinsko M., Daniels H. (2015b). Effects of water hardness and calcium: Magnesium ratios on reproductive performance and offspring quality of Macrobrachium rosenbergii. Journal of the World Aquaculture Society, 46: 519-530.
Rezaei Tavabe K., Zare Chahouki M.A., Yazdanpanah A., Vazirzadeh A. (2010). Limnological and pollution study of Shahdadroud River, Kerman province. Desert, 14: 21-26.
Rezaei Tavabe K., Yavar M., Kabir S., Akbary P., Aminikhoei Z. (2020). Toxicity effects of multi-walled carbon nanotubes (MWCNTs) nanomaterial on the common carp (Cyprinus carpio L. 1758) in laboratory conditions. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 237: 108832.
Santos E.A., Keller R. (1993). Crustacean hyperglycemic hormone (CHH) and the regulation of carbohydrate metabolism: Current perspectives. Comparative Biochemistry and Physiology Part A: Physiology, 106: 405-411.
Saria R., Mouchet F., Perrault A., Flahaut E., LaplancheC., Boutonnet J.C., Pinelli E., Gauthier L. (2014). Short term exposure to multi-walled carbon nanotubes induce oxidative stress and DNA damage in Xenopus laevis tadpoles. Ecotoxicology and Environmental Safety, 107: 22-29.
Selck H., Handy R.D., Fernandes T.F., Klaine S.J., Petersen E.J. (2016). Nanomaterials in the aquatic environment: A European Union–United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead. Environmental Toxicology and Chemistry, 35: 1055-1067.
Souza J.P., Mansano A.S., Venturini F.P., Santos F., Zucolotto V. (2019). Antioxidant metabolism of zebrafish after sub-lethal exposure to graphene oxide and recovery. Fish Physiology and Biochemistry, 45: 1289-1297.
Sreenivasula Reddy P., Ramachandra Reddy P., Sainath S.B. (2011). Cadmium and mercury-induced hyperglycemia in the fresh water crab, Oziotelphusa senex senex: Involvement of neuroendocrine system. Ecotoxicology and Environmental Safety, 74: 279-283.
Subramani K., Mehta M. (2018). Nanodiagnostics in microbiology and dentistry (Chapter 19). In: K. Subramani, W.Ahmed (Eds.), Emerging Nano-technologies in Dentistry (Second Edition). William Andrew Publishing. pp: 391-419.
Tavabe K.R., Kuchaksaraei B.S., Javanmardi S. (2020). Effects of ZnO nanoparticles on the Giant freshwater prawn (Macrobrachium rosenbergii, de Man, 1879): Reproductive performance, larvae development, CHH concentrations and anti-oxidative enzymes activity. Animal Reproduction Science, 221: 106603.
Tavabe K.R., Rafiee G., Frinsko M., Daniels H. (2013). Effects of different calcium and magnesium concentrations separately and in combination on Macrobrachium rosenbergii (de Man) larviculture. Aquaculture, 412-413: 160-166.
Tidwell J.H., D'Abramo L.R., Coyle S.D., Yasharian D. (2005). Overview of recent research and development in temperate culture of the freshwater prawn (Macrobrachium rosenbergii De Man) in the South Central United States. Aquaculture Research, 36: 264-277.
Tripath A. (2016). Oxidative stress, reactive oxygen species (ROS) and antioxidative defense system, with special reference to fish. International Journal of Current Research in Biosciences and Plant Biology, 3: 79-89.
Vali S., Mohammadi G., Tavabe K.R., Moghadas F., Naserabad S.S. (2020). The effects of silver nanoparticles (Ag-NPs) sublethal concentrations on common carp (Cyprinus carpio): Bioaccumulation, hematology, serum biochemistry and immunology, antioxidant enzymes, and skin mucosal responses. Ecotoxicology and Environmental Safety, 194: 110353.
Wang X., Qu R., Huang Q., Wei Z., Wang Z. (2015). Hepatic oxidative stress and catalyst metals accumulation in goldfish exposed to carbon nanotubes under different pH levels. Aquatic Toxicology, 160: 142-150.
Wu F., Harper B.J., Harper S.L. (2019). Comparative dissolution, uptake, and toxicity of zinc oxide particles in individual aquatic species and mixed populations. Environmental Toxicology and Chemistry, 38: 591-602.
Zhang W., Zeng Z., Liu Z., Huang J., Xiao R., Shao B., Liu Y., Liu Y., Tang W., Zeng G., Gong J., He Q. (2020). Effects of carbon nanotubes on biodegradation of pollutants: Positive or negative? Ecotoxicology and Environmental Safety, 189: 109914.
Zhu B., Liu G.L., Ling F., Song L.S., Wang G.X. (2015). Development toxicity of functionalized single-walled carbon nanotubes on rare minnow embryos and larvae. Nanotoxicology, 9: 579-590.
Copyright (c) 2023 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.