Cyanobacteria diversity in various waterbodies of Mosul, Iraq
Downloads
Cyanobacteria are photoautotrophic bacteria that can adapt to various environments due to their extensive physiological adaptability. These bacteria are naturally distributed in diverse ecosystems, including freshwater, marshes, groundwater, lakes, brackish water (estuaries), salt water, moist soils, and dry land. This study was conducted to enlist cyanobacteria isolates in different waterbodies in Mosul, Iraq. For this purpose, 16 sites were selected and sampled. Based on the results, the Gloeocapsa nigrescens was the dominant species (10.34%), followed by Microcystis robusta (6.69%), Oscillatoria nigro-viridis (6.69%), and Oscillatoria sp. (6.69%). Mosul Dam Lake (station 12) was the most diverse one with six cyanobacteria species, including Schizothrix sp., Aphanocapsa koordesii, G. crepidium, O. trichoides, M. flos-aquae, and Plectonema tomasinianum.
Downloads
Al-Shakarchi H.K.S., Al-Shahery Y.J. (2020). Evaluation of Arthrospira Sp. Growth Ability on Heavy Metal Salts and Their Effect on Some Cellular Components. Periodico Tche Quimica, 17(34): 667-677.
Ammar M., Comte K., Tran T.D., Bou M.E. (2014). Initial growth phases of two bloom-forming cyanobacteria (Cylindrospermopsis raciborskii and Planktothrix agardhii) in monocultures and mixed cultures depending on light and nutrient conditions. Annales De Limnologie-international Journal of Limnology, 50: 231-240.
Batterton J.C., Van Baalen C. (1971). Growth responses of blue-green algae to sodium chloride concentration. Archiv für Mikrobiologie, 76(2):151-165.
Burnat M., Herroro A., Flores E. (2014). Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Biological Sciences, 111(10): 3823-3828.
Chaillan F., Gugger M., Saliot A., Coute A., Oudot J. (2006). Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere, 62(10): 1574-1582.
Demay J., Bernard C., Reinhardt A., Marie B. (2019). Natural Products from Cyanobacteria: Focus on Beneficial Activities. Marine Drugs, 17(6): 320.
Demoulin C.F., Lara Y.J., Cornet L., François C., Baurain D., Wilmotte A., Javaux E.J. (2019). Cyanobacteria evolution: Insight from the fossil record. Free Radical Biology and Medicine, 140: 206-223.
Filatova D., Jones M.R., Haley J.A., Núñez O., Farré M., Janssen E.M.L. (2021). Cyanobacteria and their secondary metabolites in three freshwater reservoirs in the United Kingdom. Environmental Sciences Europe, 33(1): 29.
Forchhammer K., Selim K.A. (2020). Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiology Reviews, 44(1): 33-53.
Herrero A., Stavans J., Flores E. (2016). The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiology Reviews, 40(6): 831-854.
El-Sheekh M.M., Hamouda R.A. (2014). Biodegradation of crude oil by some cyanobacteria under heterotrophic conditions. Desalination and Water Treatment, 52(7-9): 1448-1454.
Hossain M.F., Ratnayake R.R., Mahbub S., Kumara K.W., Magana-Arachchi D.N. (2020). Identification and culturing of cyanobacteria isolated from freshwater bodies of Sri Lanka for biodiesel production. Saudi Journal of Biological Sciences, 27(6): 1514-1520.
Jiang T., Wu G., Niu P., Cui Z., Bian X., Xie Y., Qu K. (2022). Short-term changes in algal blooms and phytoplankton community after the passage of Super Typhoon Lekima in a temperate and inner sea (Bohai Sea) in China. Ecotoxicology and Environmental Safety, 232: 113223.
Karmakar R., Kundu K., Rajor A. (2018). Fuel properties and emission characteristics of biodiesel produced from unused algae grown in India. Petroleum Science, 15(2): 385-395.
Kaushik A., Sharma M. (2017). Exploiting biohydrogen pathways of cyanobacteria and green algae: an industrial production approach. In: Biohydrogen production: sustainability of current technology and future perspective. Springer, New Delhi. pp: 97-113.
Kini S., Divyashree M., Mani M.K., Mamatha B.S. (2020). Algae and cyanobacteria as a source of novel bioactive compounds for biomedical applications. Advances in Cyanobacterial Biology. pp: 173-194.
Kumar J., Singh D., Tyagi M.B., Kumar A. (2019). Cyanobacteria: Applications in biotechnology. Cyanobacteria, 327-346.
Lu T., Zhang Q., Zhang Z., Hu B., Chen J., Chen J., Qian H. (2021). Pollutant toxicology with respect to microalgae and cyanobacteria. Journal of Environmental Sciences, 99: 175-186.
Lürling M., Mello M.M.E., Van Oosterhout F., de Senerpont Domis L., Marinho M.M. (2018). Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Frontiers in Microbiology, 9: 1851.
Makhalanyane T.P., Valverde A., Velázquez D., Gunnigle E., Van Goethem M.W., Quesada A., Cowan D.A. (2015). Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodiversity and Conservation, 24(4): 819-840.
Marino T., Casella P., Sangiorgio P., Verardi A., Ferraro A., Hristoforou E., Molino A., Musmarra D. (2020). Natural Beta-carotene: a Microalgae Derivate for Nutraceutical Applications. Chemical Engineering Transactions, 79: 103-108.
Matheron R., Caumette P. (2015). Structure and Functions of Microorganisms: Production and Use of Material and Energy. In: J.C. Bertrand, P. Caumette, P. Lebaron, R. Matheron, P. Normand P., Sime-Ngando T. (Eds.) Environmental Microbiology: Fundamentals and Applications. Springer, Dordrecht.
Mona S., Kumar V., Deepak B., Kaushik A. (2020). Cyanobacteria: The Eco-Friendly Tool for the Treatment of Industrial Wastewaters. Bioremediation of Industrial Waste for Environmental Safety, 389-413.
Paerl H.W., Hall N.S., Calandrino E.S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 409(10): 1739-1745.
Radwan S.S., Al-Hasan R.H. (2000). Oil pollution and cyanobacteria. In: The ecology of cyanobacteria. Springer, Dordrecht. pp: 307-319.
Sánchez-Baracaldo P., Bianchini G., Wilson J.D., Knoll A.H. (2022). Cyanobacteria and biogeochemical cycles through earth history. Trends in Microbiology, 30(2): 143-157.
Sergeev V.N. (2018). The Biostratigraphic paradox of Precambrian cyanobacteria: distinguishing the succession of microfossil assemblages and evolutionary changes observed among Proterozoic prokaryotic microorganisms. Paleontological Journal, 52(10): 1148-1161.
Singh J.Sh., Kumer A., Ral A.N., Singh D.P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontier in Microbiology, 7(529): 1-19.
Svir?ev Z., Lali? D., Bojadžija Savi? G., Tokodi N., Drobac Backovi? D., Chen L., Meriluoto J., Codd G.A. (2019). Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings. Archives of Toxicology, 93(9): 2429-2481.
Tamulonis C., Kaandorp J. (2014). A model of filamentous cyanobacteria leading to reticulate pattern formation. Life, 4(3): 433-456.
Teta R., Romano V., Della Sala G., Picchio S., De Sterlich C., Mangoni A., Lega M. (2017). Cyanobacteria as indicators of water quality in Campania coasts, Italy: a monitoring strategy combining remote/proximal sensing and in situ data. Environmental Research Letters, 12(2): 024001.
Vincent W.F. (2009). Cyanobacteria. Encyclopedia of Inland Waters. Academic Press, Oxford. 232 p.
Fitri S.G.S., Sutarno S., Sasongko H., Rosyadi H., Ratnasari M., Chairunisa S. (2021). Morphological diversity of culturable cyanobacteria from habitats in Segara Anakan, Central Java, Indonesia. Biodiversitas, Journal of Biological Diversity, 22(12): 5617-5626.
Waterbury J.B. (2006). The cyanobacteria-isolation, purification and identification. The Prokaryotes, 4: 1053-1073.
Wijffels R.H., Kruse O., Hellingwerf K.J. (2013). Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Current Opinion in Biotechnology, 24(3): 405-413.
Yadav S., Agrawal M., Raipuria N., Agrawal M.K. (2016). Antimicrobial activity of Nostoc calcicola (Cyanobacteria) isolated from central India against human pathogens. Asian Journal of Pharmaceutics, 10(4): 554-559.
Zahra Z., Choo D.H., Lee H., Parveen A. (2020). Cyanobacteria: Review of Current Potentials and Applications. Environments, 7(2): 13.
Zutshi S., Fatma T. (2015). Cyanobacteria. In: The algae world. Springer, Dordrecht. pp: 57-89.
Wi?niewska K.A., ?liwi?ska-Wilczewska S., Lewandowska A.U. (2022). Airborne microalgal and cyanobacterial diversity and composition during rain events in the southern Baltic Sea region. Scientific Reports, 12(1): 1-9.
Kostryukova A.M., Mashkova I., Belov S., Shchelkanova E., Trofimenko V. (2021). Assessing phytoplankton species structure in trophically different water bodies of South Ural, Russia. Biodiversitas Journal of Biological Diversity, 22(8): 3530-3538.
Copyright (c) 2022 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.