Effect of aquatic plants upon planktonic and periphytic organisms: a microcosm-based approach

Svetlana Kurbatova, Nina Lapteva, Svetlana Bykova, Igor Yershov, Yelena Borisovskaya


Aquatic plants have a major influence upon other aquatic organisms, by altering both water chemistry and spatial structure of the habitat in shallow water bodies. Some of them, such as Stratiotes aloides L., may suppress algal growth. But how aquatic plants would ultimately influence the heterotrophic community and the aquatic ecosystem as a whole is far from clear. Our microcosm-based study demonstrated that even a modest density of S. aloides caused a decline in phytoplankton chlorophyll concentration and periphytic algae abundance, including cyanobacteria, whereas diatoms appeared to be immune to the plant influence. Photosynthetic rate remained unaltered despite decreased chlorophyll concentration. While bacterial counts remained largely unchanged, more bacteria were observed forming microcolonies as well as associating with particulate organic matter. Numbers of periphytic heterotrophic organisms did not differ significantly between the planted and plant-free control microcosms. Zooplankton diversity increased and cladocerans assumed a more prominent position within the microcosms with macrophytes. We assume that the presence of plant’s leads to increased importance of bacteria and protists in the functioning of the food webs. Therefore, decreasing of algal abundance does not involve reducing the number of heterotrophic planktonic and periphytic organisms.


Aquatic plants, Stratiotes aloides, Bacteria, Periphyton, Plankton.

Full Text:



Alekin O.A., Semenov A.D., Skopintsev B.A. (1973). Manual on Chemical Analysis of Surface Waters. Gidrometeoizdat. Leningrad, 272 p. (In Russian)

Al-Shehri A.M. (2010). Differential sensitivities of different Scenedesmus obliquus strains to the allelopathic activity of the macrophytes Stratiotes aloides. Journal of Applied Sciences, 10: 1769-1774.

Bittel L. (1980). Zooplankton of Stratiotes aloides aggregations. Acta Universitatis Nicolai Copernici. Prace Limnologiczne, 12: 3-23.

Brammer E.S. (1979). Exclusion of phytoplankton in the proximity of dominant water soldier (Stratiotes aloides). Freshwater Biology, 9: 233-249.

Brammer E.S., Wetzel R.G. (1984). Uptake and release of K+, Na+ and Ca2+ by the water soldier, Stratiotes aloides L. Aquatic Botany, 19: 119-130.

Burks R.L., Jeppesen E., Lodge D.M. (2000). Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. Oikos, 88: 139-147.

Burks R.L., Mulderij G., Gross E., Jones I., Jacobsen L., Jeppesen E., Van Donk E. (2006). The crucial role of macrophytes in regulating trophic interactions in shallow lake wetlands. Ecological Studies, 191: 37-53.

Carrik H.J., Fahnenstiel G.L., Stoermer E.F., Wetzel R.G. (1991). The importance of zooplankton-protozoan trophic couplings in Lake Michigan. Limnology and Oceanography, 36: 1335-1345.

Cataldo D.A., Maroon M., Schrader L.E., Youngs V.L. (1975). Rapid colorimetric determination of nitrate in plant tissues by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6: 71-80.

Datsenko Yu.S. (2007). Reservoir Eutrophication. Hydrological and Hydrochemical Perspective. Geos. Moscow, 252 p. (In Russian)

Dorgelo J., Koning K. (1980). Avoidance of macrophytes and additional notes on avoidance of the shore by Acanthodiaptomus denticornis (Wierzejski, 1887) from Lake Pavin (Auvergne, France). Hydrobiological Bulletin, 14: 196-208.

Efremov A.N., Belgibaeva A.M., Alekhina E.A., Filimonova M.V., Sviridenko B.F., Shalygin S.P., Rusak S.N. (2012). Composition structure of Stratiotes aloides (Hydrocharitaceae) in waterbodies of the medium Irtysh basin. Chemistry of Plant Raw Material, 4: 161-166. (In Russian)

Ejstmont-Karabin J. (1984). Phosphorus and nitrogen excretion by lake zooplankton (rotifers and crustaceans) in relation to individual body weights of the animals, ambient temperature and presence or absence of food. Polish Journal of Ecology, 32: 3-42.

Gerloff G.C., Fishbeck K.A. (1969). Quantitative cation requirements of several green and blue-green algae. Journal of Phycology, 5: 109-114.

Hammer Ø., Harper D.A.T., Ryan P.D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4: 9-15.

Hilt S. (2006). Allelopathic inhibition of epiphytes by submerged macrophytes. Aquatic Botany, 85: 252-256.

Irvine K., Balls H., Moss B. (1990). The entomostracan and rotifer communities associated with submerged plants in the Norfolk Broadland – effects of plant biomass and species composition. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 75: 121-141.

Jaworski G.H.M., Talling J.F., Heaney S.I. (2003). Potassium dependence and phytoplankton ecology: an experimental study. Freshwater Biology, 48: 833-840.

Jasser I. (1995). The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia, 306: 21-32.

Kuznetsov S.I., Dubinina G.A. (1989). Methods of Study of Aquatic Organisms. Nauka. Moscow, 286 p. (In Russian)

Langenheder S., Jürgens K. (2001). Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnology and Oceanography, 46: 121-134.

McAbendroth L., Ramsay P.M., Foggo A., Rundle S.D., Bilton D.T. (2005). Does macrophyte fractal complexity drive invertebrate diversity, biomass and body size distributions? Oikos, 111: 279-290.

Michalska-Hejduk D., Kopeć D., Drobniewska A., Sumorok B. (2009). Comparison of physical and chemical properties of water and floristic diversity of oxbow lakes under different levels of human pressure: A case study of the lower San River (Poland). Ecohydrology and Hydrobiology, 9: 183-191.

Mieczan T. (2010). The influence of emergent and submerged macrophyte beds on ciliate communities in a shallow lake. Oceanological and Hydrobiological Studies, 39: 107-115.

Mineeva N.M., Shchure L.A. (2012). Chlorophyll a content in phytoplankton biomass (review). Аlgologia, 22: 441-456. (In Russian)

Mohamed Z.A., Al-Shehri A.M. (2010). Differential responses of epiphytic and planktonic toxic cyanobacteria to allelopathic substances of the submerged macrophyte Stratiotes aloides. International Review of Hydrobiology, 95: 224-234.

Moore J.C., Berlow E.L., Coleman D.C., de Ruiter P.C., Dong Q., Hastings A., Johnson N.C., McCann K.S., Melville K., Morin P.J., Nadelhoffer K., Rosemond A.D., Post D.M., Sabo J.L., Scow K.M., Vanni M.J., Wall D.H. (2004). Detritus, trophic dynamics and biodiversity. Ecology Letters, 7: 584-600.

Mulderij G., Mau B., de Senerpont Domis L.N., Smolders A.J.P., Van Donk E. (2009). Interaction between the macrophyte Stratiotes aloides and filamentous algae: does it indicate allelopathy?. Aquatic Ecology, 43: 305-312.

Mulderij G., Mooij W.M., Smolders A.J.P., Van Donk E. (2005). Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aquatic Botany, 82: 284-296.

Mulderij G., Smolders A.J.P., Van Donk E. (2006). Allelopathic effect of the aquatic macrophyte, Stratiotes aloides, on natural phytoplankton. Freshwater Biology, 51: 554-561.

Muylaert K., Pйrez-Martнnez C., Sбnchez-Castillo P., Lauridsen T.L., Vanderstukken M., Declerck S.A.J., Van der Gucht K., Conde-Porcuna J.-M., Jeppesen E., De Meester L., Vyverman W. (2010). Influence of nutrients, submerged macrophytes and zooplankton grazing on phytoplankton biomass and diversity along a latitudinal gradient in Europe. Hydrobiologia, 653: 79-90.

Pennak R.W. (1973). Some evidence for aquatic macrophytes as reppelents for a limnetic species of Daphnia. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 58: 569-576.

Pokorný J., Květ J., Ondok J.P., Toul Z., Ostrý I. (1984). Production-ecological analysis of a plant community dominated by Elodea canadensis Michx. Aquatic Botany, 19: 263-292.

Porter K.G., Feig Y.S. (1980). The use of DAPI for identifying and counting of aquatic microflora. Limnology and Oceanography, 25: 943-948.

Renman G. (1989). Life histories of two clonal populations of Stratiotes aloides L. Hydrobiologia, 185: 211-222.

Rooney N., Kalff J. (2003). Submerged macrophyte-bed effects on water-column phosphorus, chlorophyll a, and bacterial production. Ecosystems, 6: 797-807.

Sanders R.W., Wickham S.A. (1993). Planktonic protozoa and metazoa: predation, food quality and population control. Marine Microbial Food Webs, 7: 197-223.

Sanders R.W., Williamson C.E., Stutzman P.L., Moeller R.E., Goulden C.E., Aoki-Goldsmith R. (1996). Reproductive success of “herbivorous” zooplankton fed algal and nonalgal food resources. Limnology and Oceanography, 41:1295-1305.

Šimek K., Hartman P., Nedoma J., Pernthaler J., Springmann D., Vrba J., Psenner R. (1997). Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquatic Microbial Ecology, 12: 49-63.

Sirenko L.A., Kureishevich A.V. (1982). Determination of chlorophyll content in the plankton of freshwater bodies. Naukova Dumka. Kiev, 52 p. (In Russian)

Strzałek M., Koperski P. (2009). The Stratiotes aloides L. stand as a habitat in oxbow lake Bużysko. Aquatic Botany, 90: 1-6.

Tarkowska-Kukuryk M. (2006). Water soldier Stratiotes aloides L. (Hydrocharitaceae) as a substratum for macroinvertebrates in a shallow eutrophic lake. Polish Journal of Ecology, 54: 441-451.

Toporowska M., Pawlik-Skowrońska B., Wojtal A.Z. (2008). Epiphytic algae on Stratiotes aloides L., Potamogeton lucens L., Ceratophyllum demersum L. and Chara spp. in a macrophyte-dominated lake. Oceanological and Hydrobiological Studies, 37: 51-63.

Watson R.A., Osborne P.L. (1979). An algal pigment ratio as an indicator of the nitrogen supply to phytoplankton in three Norfolk broads. Freshwater Biology, 9: 585-594.


  • There are currently no refbacks.