Secondary metabolites of marine-derived Bacillus spizizenii against the enteric redmouth disease in common carp, Cyprinus carpio
Downloads
Downloads
Yi Y., Zhang Z., Zhao F., Liu H., Yu L., Zha J., Wang G. (2018). Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish and Shellfish Immunology, 78: 322-330.
Ummey S., Khan S., Vijayakumar P.P.N., Ramya A. (2021). Enteric Red mouth disease and its causative bacterium, Yersinia ruckeri, in Indian Major Carps from culture ponds in Andhra Pradesh. India. Aquaculture and Fisheries, 6(3): 289-299.
Li X.M., Zhu Y.J., Ringí¸ E., Yang D. (2020). Prevalence of Aeromonas hydrophila and Pseudomonas fluorescens and factors influencing them in different freshwater fish ponds. Iranian Journal of Fisheries Sciences, 19(1): 111-124.
Khorrami S., Kamali F., Zarrabi A. (2020). Bacteriostatic activity of aquatic extract of black peel pomegranate and silver nanoparticles biosynthesized by using the extract. Biocatalysis and Agricultural Biotechnology, 25: 101620.
Jafari-Nasab T., Khaleghi M., Farsinejad A., Khorrami S. (2021). Probiotic potential and anticancer properties of Pediococcus sp. isolated from traditional dairy products. Biotechnology Reports, 29: e00593.
Pal S. (2015). Phage therapy an alternate disease control in Aquaculture: A review on recent advancements. Journal of Agriculture and Veterinary Sciences, 8: 68-81.
Banerjee G., Ray A.K. (2017). The advancement of probiotics research and its application in fish farming industries. Research in Veterinary Science, 115: 66-77.
Zangeneh M., Khorrami S., Khaleghi M. (2020). Bacteriostatic activity and partial characterization of the bacteriocin produced by L. plantarum sp. isolated from traditional sourdough. Food Science and Nutrition, 8(11): 6023-6030.
Sihag R.C., Sharma P. (2012). Probiotics: the new ecofriendly alternative measures of disease control for sustainable aquaculture. Journal of Fisheries and Aquatic Science, 7(2): 72-103.
Petersen L-E., Kellermann M.Y., Schupp P.J. (2020). Secondary metabolites of marine microbes: From natural products chemistry to chemical ecology. In: YOUMARES 9-The Oceans: Our Research, Our Future: Proceedings of the 2018 conference for young marine researcher in Oldenburg, Germany. Springer International Publishing: Cham, Switzerland. pp: 159-180.
la Cruz-López D., Cruz-López L., Holguín-Meléndez F., Guillén-Navarro G.K., Huerta-Palacios G. (2022). Volatile Organic Compounds Produced by Cacao Endophytic Bacteria and Their Inhibitory Activity on Moniliophthora roreri. Current Microbiology, 79(2): 1-11.
Duc H.D., Thuy N.T.D., Thanh L.U., Tuong T.D., Oanh N.T. (2022). Degradation of diuron by a bacterial mixture and shifts in the bacterial community during bioremediation of contaminated soil. Current Microbiology 79(1): 1-11.
Caulier S., Nannan C., Gillis A., Licciardi F., Bragard C., Mahillon J. (2019). Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Frontiers in Microbiology 10: 302.
Harwood C.R., Mouillon J-M., Pohl S., Arnau J. (2018). Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews, 42(6): 721-738.
Liu Z., Wang Y., Jia X., Lu W. (2019). Isolation of secondary metabolites with antimicrobial activities from Bacillus amyloliquefaciens LWYZ003. Transactions of Tianjin University, 25(1): 38-44.
Kunst F., Ogasawara N., Moszer I., Albertini A.M., Alloni G.O., Azevedo V., Yoshikawa H. (1997). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 390(6657): 249-256.
Dusane D.H., Damare S.R., Nancharaiah Y.V., Ramaiah N., Venugopalan V.P., Kumar A.R., Zinjarde S.S. (2013) Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis. PLoS One, 8: e64501.
Amin M., Rakhisi Z., Zarei A.A. (2015). Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties. Avicenna Journal Of Clinical Microbiology and Infection, 2: 23233.
Anju K.M., Archana M.M., Mohandas C., Nambisan B. (2015). Purification and identification of an antibacterial protein from the symbiotic bacteria associated with novel entomopathogenic nematode, Rhabditis (Oscheius) sp. World Journal of Microbiology and Biotechnology, 31(4): 621-632.
Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259): 680-685
Khorrami S., Zarrabi A., Khaleghi M., Danaei M., Mozafari M.R. (2018) Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine 13: 8013-8024.
Boottanun P., Potisap C., Hurdle J.G., Sermswan R.W. (2017). Secondary metabolites from Bacillus amyloliquefaciens isolated from soil can kill Burkholderia pseudomallei. AMB Express, 7(1): 1-11.
Matobole R.M., Van Zyl L.J., Parker"Nance S., Davies"Coleman M.T., Trindade M. (2017). Antibacterial activities of bacteria isolated from the marine sponges Isodictya compressa and Higginsia bidentifera collected from Algoa Bay, South Africa. Marine Drugs, 15: 47.
Hassan S.W.M., Abdul-Raouf U.M., Ali MA-R. (2015). Antagonistic interactions and phylogenetic diversity of antimicrobial agents producing marine bacteria in Suez Bay. Egyptian Journal of Aquatic Research, 41(1): 57-67.
Zhang J., Chen M., Huang J., Guo X., Zhang Y., Liu D., Wang J. (2019). Diversity of the microbial community and cultivable protease-producing bacteria in the sediments of the Bohai Sea, Yellow Sea and South China Sea. PLoS One, 14: e0215328.
Halket G., Dinsdale A.E., Logan N.A. (2010) Evaluation of the VITEK2 BCL card for identification of Bacillus species and other aerobic endosporeformers. Letters in Applied Microbiology, 50(1): 120-126.
Mussa A.H., Baqer M.S. (2017). The antimicrobial effect of Bacillus spp. filtrates and extracted compounds in some pathogenic agent. College Of Basic Education Research Journal, 23: 99.
Kleerebezem M., Quadri L.E. (2001). Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides, 22(10): 1579-1596.
Poole K. (2005). Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 49(2): 479-487.
Abbass A., Sharifuzzaman S.M., Austin B. (2010). Cellular components of probiotics control Yersinia ruckeri infection in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish Disease, 33(1): 31-37.
Kuebutornye F.K., Abarike E.D., Lu Y., Hlordzi V., Sakyi M.E., Afriyie G., Xie C.X. (2020). Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiology and Biochemistry, 46(3): 819-841.
Santos R.A., Oliva-Teles A., Saavedra M.J., Enes P., & Serra C.R. (2018) Bacillus spp. as source of natural antimicrobial compounds to control aquaculture bacterial fish pathogens. Frontiers in Marine Science, Doi: 10.3389/conf.FMARS.2018.06.00129.
Al-Imarah E. (2008). Distribution of some aerobic bacteria in an infected Cyprinus carpio L. fish farm in Basrah and its resistance to antibiotics. Journal of Karbala University, 4(2): 209-215.
de Oliveira J.A.M., Williams D.E., Andersen R.J., Sarragiotto M.H., Baldoqui D.C. (2020). Mycenolide A, new butenolide from a marine sediment-derived bacterium Streptomyces sp. 4054. Natural Product Research, 34(20): 2986-2989.
Al-Zereini W.A. (2014). Bioactive crude extracts from four bacterial isolates of marine sediments from Red Sea, Gulf of Aqaba, Jordan. Jordan Journal of Biological Sciences, 1477(1571): 133-137.
Copyright (c) 2022 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.