Anticoagulant effectiveness of glycosaminoglycan extracted from the scale of Binni, Mesopotamichthys sharpeyi (Cyprinidae)
Downloads
Fishery wastes are one of natural resources to extract bioactive substances such as collagen and glycosaminoglycan (GAG). The anticoagulant activity of glycosaminoglycans extracted from Binni fish, Mesopotamichthys sharpeyi scales was the aim of this study. The cationic salt of cetyl pyridinium chloride was used to extract the glycosaminoglycan. The structure of the isolated glycosaminoglycan was identified by ELISE glycosaminoglycan kit and compared to that of heparin. Prothrombin time (PT), and thrombin time (TT) on plasma of male mice at three concentrations of 20, 40, and 100 g/ml were used to determine the coagulant property of the extracted substance. The extracted glycosaminoglycan was calculated to be around 27.7 mg/g of dry tissue. The presence of heparin-like molecules in the glycosaminoglycan isolated from fish scales was confirmed by ELISE GAG kit. When the concentration of isolated glycosaminoglycan was increased, the time to coagulate rose. The PT and TT coagulation times were 4:1 and 2:1. Times faster than the control at 100 g/ml. When compared to synthetic anticoagulant substances like heparin, the glycosaminoglycan isolated from fish scales displayed good anticoagulation qualities.
Downloads
Akbulut M.D., Akgí¼l E. (2014). Shark cartilage and liver oil using possibilities against to the cancer formation. Tí¼rk Bilimsel Derlemeler Dergisi, 7(1): 42-45.
Athukorala Y., Jung W.K., Vasanthan T., Jeon Y.J. (2006). An anticoagulative polysaccharide from an enzymatic hydrolysate of Ecklonia cava. Carbohydrate Polymers, 66(2): 184-191.
Aydin S. (2015). A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides, 72: 4-15.
Capila I., Linhardt R.J. (2002). Heparin-protein interactions. Angewandte Chemie International Edition in English, 41(3): 391-412.
Clarke S. (2004). Understanding pressures on fishery resources through trade statistics: a pilot study of four products in the Chinese dried seafood market. Fish and Fisheries, 5(1): 53-74.
Engvall E. (2010). The ELISA enzyme-linked immunosorbent assay. Clinical Chemistry, 56: 319-320.
Garnjanagoonchorn W., Wongekalak L., Engkagul A. (2007). Determination of chondroitin sulfate from different sources of cartilage. Chemical Engineering and Processing: Process Intensification, 46(5): 465-471.
Goldberg V.M., Buckwalter J.A. (2005). Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity. Osteoarthritis and Cartilage, 13(3): 216-224.
Iaci J.F., Vecchione A.M., Zimber M.P., Caggiano A.O. (2007). Chondroitin sulfate proteoglycans in spinal cord contusion injury and the effects of chondroitinase treatment. Journal of Neurotrauma, 24(11): 1743-1760.
Im A.R., Kim J.Y., Kim H.S., Cho S., Park Y., Kim Y.S. (2013). Wound healing and antibacterial activities of chondroitin sulfate-and acharan sulfate-reduced silver nanoparticles. Nanotechnology, 24(39): 395102.
Krylov V.B., Grachev A.A., Ustyuzhanina N.E., Ushakova N.A., Preobrazhenskaya M.E., Kozlova N.I. Nifantiev N.E. (2011). Preliminary structural characterization, anti-inflammatory and anticoagulant activities of chondroitin sulfates from marine fish cartilage. Russian Chemical Bulletin, 60(4): 746-753.
Linhardt R.J. (2003). 2003 Claude S. Hudson Award address in carbohydrate chemistry. Heparin: structure and activity. Journal of Medicinal Chemistry, 46(13): 2551-2564.
Maccari F., Galeotti F., Volpi N. (2015). Isolation and structural characterization of chondroitin sulfate from bony fishes. Carbohydrate Polymers, 129: 143-147.
Majdoub H., Mansour M.B., Chaubet F., Roudesli M.S., Maaroufi R.M. (2009). Anticoagulant activity of a sulfated polysaccharide from the green alga Arthrospira platensis. Biochimica et Biophysica Acta (BBA)-General Subjects 1790(10): 1377-1381.
Mucci A., Schenetti L., Volpi N. (2000). 1H and 13C nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin. Carbohydrate Polymers, 41(1): 37-45.
Najjam S., Gibbs R.V., Gordon M.Y., Rider C.C. (1997). Characterization of human recombinant interleukin 2 binding to heparin and heparan sulfate using an ELISA approach. Cytokine, 9(12): 1013-1022.
Neil K.M., Caron J.P., Orth M.W. (2005). The role of glucosamine and chondroitin sulfate in treatment for and prevention of osteoarthritis in animals. Journal of the American Veterinary Medical Association, 226(7): 1079-1088.
Olczyk K., Głowacki A., Koźma E.M. (1997). Non-insulin-dependent diabetes mellitus-associated changes in serum glycosaminoglycans. Pathophysiology, 4(2): 121-129.
Pan Y., Wang P., Zhang F., Yu Y., Zhang X., Lin L., Linhardt R.J. (2018). Glycosaminoglycans from fish swim bladder: isolation, structural characterization and bioactive potential. Glycoconjugate Journal, 35(1): 87-94.
Plaas A.H., West L.A., Wong-Palms S., Nelson F.R. (1998). Glycosaminoglycan sulfation in human osteoarthritis: disease-related alterations at the non-reducing termini of chondroitin and dermatan sulfate. Journal of Biological Chemistry, 273(20): 12642-12649.
Pomin V.H., Mulloy B. (2015). Current structural biology of the heparin interactome. Current Opinion in Structural Biology, 34: 17-25.
Rajapakse N., Jung W.K., Mendis E., Moon S.H., Kim S.K. (2005). A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sciences, 76(22): 2607-2619.
Shute J. (2012). Glycosaminoglycan and chemokine/growth factor interactions. Heparin-A Century of Progress, 307-324.
Tingbí¸ M.G., Kolset S.O., Ofstad R., Enersen G., Hannesson K.O. (2005). Sulfated glycosaminoglycans in the extracellular matrix of muscle tissue in Atlantic cod (Gadus morhua) and Spotted wolffish (Anarhichas minor). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 140(3): 349-357.
Tomatsu S., Okamura K., Maeda H., Taketani T., Castrillon S.V., Gutierrez M.A., Noguchi A. (2005). Keratan sulphate levels in mucopolysaccharidoses and mucolipidoses. Journal of Inherited Metabolic Disease, 28(2): 187-202.
Vázquez J.A., Rodríguez-Amado I., Montemayor M.I., Fraguas J., González M.D.P., Murado, M.A. (2013). Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, applications and eco-friendly processes: A review. Marine Drugs, 11(3): 747-774.
Vickers N.J. (2017). Animal communication: when i'm calling you, will you answer too? Current Biology, 27(14): R713-R715.
Volpi N., Maccari F. (2002). Detection of submicrogram quantities of glycosaminoglycans on agarose gels by sequential staining with toluidine blue and Stains"All. Electrophoresis, 23(24): 4060-4066.
Wang J.Y., Roehrl M.H. (2002). Glycosaminoglycans are a potential cause of rheumatoid arthritis. Proceedings of the National Academy of Sciences, 99(22): 14362-14367.
World Health Organization (2003). Cardiovascular disease: Prevention and control. http:// www.who.int/dietphysicalactivity/publications/facts/cvd/en. Published 2003.
Yamada S., Sugahara K. (2008). Potential therapeutic application of chondroitin sulfate/dermatan sulfate. Current Drug Discovery Technologies, 5(4): 289-301.
Yang J., Wang Y., Jiang T., Lv Z. (2015). Novel branch patterns and anticoagulant activity of glycosaminoglycan from sea cucumber Apostichopus japonicus. International Journal of Biological Macromolecules, 72: 911-918.
Yip G.W., Smollich M., Götte M. (2006). Therapeutic value of glycosaminoglycans in cancer. Molecular Cancer Therapeutics, 5(9): 2139-2148.
Zhang F., Xie J., Linhardt R.J. (2014). Isolation and structural characterization of glycosaminoglycans from heads of red salmon (Oncorhynchus nerka). Jacobs Journal of Biotechnology and Bioengineering, 1(1): 002.
Zhao T., Zhou Y., Mao G., Zou Y., Zhao J., Bai S., Wu X. (2013). Extraction, purification and characterisation of chondroitin sulfate in Chinese sturgeon cartilage. Journal of the Science of Food and Agriculture, 93(7): 1633-1640.