Structure and health status of the sand crab, Emerita taiwanesis Hsueh, 2015 from Sangchan Beach, Thailand: The histopathological approach
Downloads
Although the impacts of environmental problems on aquatic organisms have been broadly reported in Thailand, the literature has not covered the sand crab, Emerita taiwanesis Hsueh, 2015. In this study, we focused on the structure and health status of E. taiwanesis, an economically important crab species, living close to human activity areas in Sangchan Beach, Rayong Province, Thailand. A total of 60 individuals were collected from the conservation and restoration of coastal resource project in Ban Rue Leg Kao Yod-based participatory during December 2016 – January 2017. We identified histopathological changes in the gill structure, but not in other vital organs, including ganglion, stomach, intestine, hepatopancreas and muscular bundles. The histological alterations in the gill include hematocyte infiltration, pyknotic nuclei and degeneration of pillar cells in the gill (50% prevalence), suggesting that the gill is a sensitive organ to environmental changes. Our observation provided a better understanding of E. taiwanesis morphology and its overall healthy state on Sangchan Beach. Additionally, we suggest that the sand crab would be a suitable sentinel species for monitoring the environment of coastal areas in Thailand.
Downloads
Abraham K.M., Radhakrushnanm T. (2002). Study on the gill of field crab, Paratelphusa hydrodromus (Herbst.) exposed to nickel. Journal of Environmental Biology, 23(2): 151-155.
Alazemi B.M., Lewis J.W., Andrews E.B. (1996). Gill damage in the freshwater fish Gnathonemus ptersii (Family: Mormyridae) exposed to selected pollutants: An ultra-structural study. Environmental Technology, 17: 225-238.
Anger K. (2001). The biology of decapod crustacean larvae. Rotterdam: A.A. Balkema Publishers. 420 p.
Bhavan P.S., Geraldine P. (2000). Histopathology of the hepatopancreas and gills of the prawn Macrobrachium malcolmsonii exposed to endosulfan. Aquatic. Toxicology, 50: 331-339.
Biaklai S. (2016). Species, size and sex ratio of mole crab (Crustacea: Hippoidea) in Y-shaped breakwater area on Sangchan Beach, Rayong Province, Thailand. (Bachelor project, Faculty of Science, Chulalongkorn University). pp: 14-31.
Boyko C.B., Harvey A.W. (1999). Crustacea decapoda: albuneidae and hippidae of the tropical Indo-West Pacific region, In: A. Crosnier (Ed.). Resultats des Campagnes Musorstom, Memoires du Muse´um National d’Histoire Naturelle. pp: 379-406.
Carew M.E., Pettigrove V.J., Metzeling L., Hoffmann A.A. (2013). Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species. Frontiers in Zoology, 10: 45.
Ceccaldi H.J. (1989). Anatomy and physiology of digestive tract of Crustaceans decapods reared in aquaculture. In: Advances in Tropical Aquaculture, Workshop at Tahiti, French Polynesia. pp: 243-259.
Chiarelli R., Roccheri M.C. (2014). Marine invertebrates as bioindicators of heavy metal pollution. Open Journal of Metal, 4: 93-106.
Diwan A.D. (2005). Current progress in shrimp endocrinology - A review. Indian Journal of Experimental Biology, 43: 209-223.
El-Gammal M.A.M., Al-Madan A., Fita N. (2016). Shrimp, crabs and squids as bio-indicators for heavy metals in Arabian Gulf, Saudi Arabia. International Journal of Fisheries and Aquatic Studies, 4: 200-207.
Fowler S.W., Teyssié J.L., Cotret O., Danis B., Rouleau C., Warnau M. (2004). Applied radiotracer techniques for studying pollutant bioaccumulation in selected marine organisms (jellyfish, crabs and sea stars). Nukleonika, 49: 97-100.
Hodkinson I.D., Jackson J.K. (2005). Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environmental Management, 35: 649-666.
Hsueh P.W. (2015). A new species of Emerita (Decapod, Anomura, Hippidae) from Taiwan, with a key to species of the genus. Crustaceana, 88: 247-258.
Jantrarotai P., Srakaew N., Sawanyatiputi A. (2005). Histological study on the development of digestive system in zoeal stages of mud crab (Scylla olivacea) Kasetsart Journal: Natural Science, 39: 666-671.
Jerome F.C., Chukuka A.V. (2016). Metal residues in flesh of edible blue crab, Callinectes amnicola, from a tropical coastal lagoon: Health implications. Human and Ecological Risk Assessment: An International Journal, 22: 1708-1725.
Johnston D.J., Alexander C.G., Yellowlees D. (1998). Epithelial cytology and function in the digestive gland of Thenus orientalis (Decapoda, Scyllaridae). Journal of Crustacean Biology, 18: 271-278.
Kumar S., Tembhre M. (2010). Fish and Fisheries. New Central agencies (P) Ltd, London. 95 p.
Lazorchak J.M., Hill B.H., Brown B.S., McCormick F.H., Engle V., Lattier D.J., Bagley M.J., Griffith M.B., Maciorowski A.F., Toth G.P. (2002). USEPA Biomonitoring and Bioindicator Concepts Needed to Evaluate the Biological Integrity of Aquatic Systems. In: B.A. Markert, A.M. Breure, H.G. Zechmeister (Eds.), Bioindicators and Biomonitors, Elsevier. pp: 831-872.
Lumasag G.J., Quinitio E.T., Aguilar R.O., Baldevarona R.B., Saclauso C.A. (2007). Ontogeny of feeding apparatus and foregut of mud crab Scylla serrata Forsskål larvae. Aquaculture Research, 38: 1500-1511.
Maharajan A., Narayanasamy Y., Ganapiriya V., Shanmugavel K. (2015). Histological alterations of a combination of Chlorpyrifos and Cypermethrin (Nurocombi) insecticide in the fresh water crab, Paratelphusa jacquemontii (Rathbun). The Journal of Basic and Applied Zoology, 72: 104-112.
Melo M.A., Abrunhosa F., Sampaio I. (2006). The morphology of the foregut of larvae and postlarva of Sesarma curacaoense De Man, 1892: A species with facultative lecithotrophy during larval development. Acta Amazonica, 36: 375-380.
Moore M.N., Livingstone D.R., Widdows J., Lowe D.M., Pipe R.K. (1987). Molecular, cellular and physiological effects of oil-derived hydrocarbons on molluscs and their use in impact assessment. Philosophical Transactions of the Royal Society B, 316: 603-623.
Munroe S.E.M., Coates-Marnane J., Burford M.A., Fry B. (2018). A benthic bioindicator reveals distinct land and ocean–Based influences in an urbanized coastal embayment. Plos one, 13(10): e0205408.
Presnell J.K., Schreibman M.P. (1997). Humason’s Animal Tissue Techniques. 5th ed. US, Johns Hopkins University Press. 572 p.
Ramachadra R.P. (2018). Endocrinology of Reproduction in Crustaceans. In: Comparative Endocrinology of Animal. pp: 1-16.
Redmond J.R. (1995). The respiratory function of hemocyanin in crustacean. Journal of Cellular and Comparative Physiology, 46: 209-247.
Saetan J, Senarai T., Tamtin M., Weerachatyanukul W., Chavadej J., Hanna P.J., Parhar I., Sobhon P., Sretarugsa P. (2013). Histological organization of the central nervous system and distribution of a gonadotropin-releasing hormone-like peptide in the blue crab, Portunus pelagicus. Cell and Tissue Research, 353(3): 493-510.
Sandeman D.C., Sandeman R.E., Derby C.D., Schmidt M. (1992). Morphology of the brain of crayfish, crabs, and spiny lobsters: a common nomenclature for homologous structures. Biological Bulletin, 183: 304-26
Sarojini R., Reddy P.S., Nagabhushanam R., Fingerman M. (1993). Napthalene-induced cytotoxicity on the hepatopancreatic cells of the red swamp crayfish, Procambarus clarkii. Bulletin of Environmental Contamination and Toxicology, 51: 689-695.
Senarat S., Biaklai S., Kettratad J., Jitpraphai S.M., Wongkamhaeng K., Sukparangsi W., Sudtongkong C., Thongboon L. (2018). Field evidence of the gametogenic maturation and embryonic development of the sand crab, Emerita taiwanesis: Implications for the understanding of the basis of the reproductive biology. Eurasian Journal of Biosciences, 12: 253-262.
Silarat P., Worachanant S., Worachanant P., Chaitanawisuti N. (2014). Distribution of heavy metal in sediments around map Ta Phut Industrial Estate, Rayoung Province and adjacent area. Science, Natural Resources and Environment, 4: 367-375.
Soegianto A., Charmantier-Daures M., Trilles, J.P., Charmantier G. (1999a). Impact of copper on the structure of gills and epipodites of the shrimp Penaeus japonicus. Journal of Crustacean Biology, 19: 209-223.
Soegianto A., Charmantier-Daures M., Trilles J.P., Charmantier G. (1999b). Impact of cadmium on the structure of gills and epipodites of the shrimp Penaeus japonicus (Crustacea: Decapoda). Aquatic Living Resources, 12: 57-70.
Sousa L.G., Petriella A.M. (2001). Changes in the hepatopancreas histology of Palaemonetes argentinus (Crustacea: Caridea) during moult. Biocell, 25: 275- 281.
Suvarna K.S., Layton C., Bancroft J.D. (2013). Bancroft’s Theory and Practice of Histological Techniques. 7th ed. Canada, Elsevier. pp: 40-95.
Thai-tourism Thailand, (2015). Rayong. Retrieved from https://thai.tourismthailand.org/fileadmin/upload_im g/Multimedia/Ebrochure/246/Rayong-1461147365 .pdf
Viarengo A. (1993). Mussels as bioindicators in marine monitoring programs. In: Proceedings of the Symposium of the Mediterranean Seas, Santa Margherita Ligure. pp: 23-27.
Victor B. (1993). Responses of hemocytes and gill tissues to sublethal cadmium chloride poisoning in the crab Paratelphusa hydrodromous (Herbst). Archives of Environmental Contamination and Toxicology, 24: 432-439.
Victor B. (1994). Gill tissue pathogenicity and hemocyte behavior in the crab Paratelphusa hydrodromous exposed to lead chloride. Journal of Environmental Science and Health A, 29: 1011-1034.
Wedderburn J., McFadzen I., Sanger R.C., Beesley A., Heath C., Hornsby M., Lowe D. (2000). The Weld application of cellular and physiological biomarkers, in the mussel Mytilus edulis, in conjunction with early life stage bioassays and adult histopathology. Marine Pollution Bulletin, 40: 25-267.
Wilkens J.L. (1981). Respiratory and Circulatory Coordination in Decapod Crustaceans. In: Locomotion and Energetics in Arthropods, Boston: Springer. pp: 277-298.
Copyright (c) 2022 International Journal of Aquatic Biology
This work is licensed under a Creative Commons Attribution 4.0 International License.