Otolith shape analysis of Lethrinus lentjan (Lacepède, 1802) and L. microdon (Valenciennes, 1830) from the Red Sea
Downloads
Otolith shape and morphology are used to identify fish species and population stocks. The aim of this study was to distinguish the Lethrinus lentjan (Lacepède, 1802) and L. microdon (Valenciennes, 1830) (family: Lethrinidae) using otolith shape. The analyses apply the ShapeR package in R which enables to extract the outline and otolith morphology from images and for statistical examining of individual variation. Otoliths of 165 individuals from the two Lethrinus species were collected during 2019 and 2020. The wavelet levels were examined by using 6 wavelets to collect 63 coefficients. The regression between width and fish length were b = -0.03 (t = 2.6, P = 0.01) for L. lentjan and was significantly different (t = 2.120, P = 0.036) for L. microdon (b = 0.018).
Downloads
Ahmed M., Ahmed M., Madkour F., Hanafy M. (2018). Phylogenetic relationships and taxonomy of three species of family Lethrinidae in the Red Sea, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 22(1): 17-24.
Anderson M.J., Willis T.J. (2003). Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology, 84(2): 511-525.
Battaglia P., Malara D., Romeo T., Andaloro F. (2010). Relationships between otolith size and fish size in some mesopelagic and bathypelagic species from the Mediterranean Sea (Strait of Messina, Italy). Scientia Marina, 74(3): 605-612.
Berg F., Almeland O.W., Skadal J., Slotte A., Andersson L., Folkvord A. (2018). Genetic factors have a major effect on growth, number of vertebrae and otolith shape in Atlantic herring (Clupea harengus). PloS One, 13(1): e0190995.
Bivand R., Leisch F., Mächler M. (2011). pixmap: Bitmap Images ("˜"˜Pixel Maps''). R package version 0.4-11.
Campana S.E., Neilson J.D. (1985). Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5): 1014-1032.
Cardinale M., Doering-Arjes P., Kastowsky M., Mosegaard H. (2004). Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 61(2): 158-167.
Carpenter K.E., Allen G.R. (1989). Emperor fishes and large-eye breams of the world, Family Lethrinidae: An Annotated and illustrated catalogue of lethrinid species known to date: Food and Agriculture Organization of the United Nations.
Carpenter K.E., Randall J.E. (2003). Lethrinus ravus, a new species of emperor fish (Perciformes: Lethrinidae) from the western Pacific and eastern Indian oceans. Zootaxa, 240(1): 1-8.
Carpenter M.A. (2002). The implications of strategy and social context for the relationship between top management team heterogeneity and firm performance. Strategic Management Journal, 23(3): 275-284.
Claude J. (2008). Morphometrics with R: Springer Science and Business Media. 316 p.
Dray S., Dufour, A.-B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4): 1-20.
Elsdon T.S., Gillanders B.M. (2004). Fish otolith chemistry influenced by exposure to multiple environmental variables. Journal of Experimental Marine Biology and Ecology, 313(2): 269-284.
Fletcher W. (1991). A test of the relationship between otolith weight and age for the pilchard Sardinops neopilchardus. Canadian Journal of Fisheries and Aquatic Sciences, 48(1): 35-38.
GAFRD (General Authority for Fish Resources Development) (2020). 2018 fisheries statistics yearbook. Cairo, Egypt: General Authority for Fish Resources Development.
Jawad L.A., Hoedemakers K., Ibáñez A.L., Ahmed Y.A., El-Regal M.A.A., Mehanna S.F. (2018). Morphology study of the otoliths of the parrotfish, Chlorurus sordidus (Forsskí¥l, 1775) and Hipposcarus harid (Forsskí¥l, 1775) from the Red Sea coast of Egypt (Family: Scaridae). Journal of the Marine Biological Association of the United Kingdom, 98(4): 819-828.
Klecka W.R., Iversen G.R., Klecka W.R. (1980). Discriminant analysis (Vol. 19): Sage.
Kotsiantis S.B., Zaharakis I., Pintelas P. 2007. Supervised machine learning: A review of classification techniques. Emerging Artificial Intelligence Applications in Computer Engineering, 160(1): 3-24.
Lecomte-Finiger R. (1999). L'otolithe: la≪boí®te noire≫ des Téléostéens. L'Année Biologique, 38(2): 107-122.
Libungan L., í“skarsson G., Slotte A., Jacobsen J., Pálsson S. (2015). Otolith shape: a population marker for Atlantic herring Clupea harengus. Journal of Fish Biology, 86(4): 1377-1395.
Libungan L.A., Slotte A., Husebí¸ í…., Godiksen J.A., Pálsson S. (2015). Latitudinal gradient in otolith shape among local populations of Atlantic herring (Clupea harengus L.) in Norway. PloS one, 10(6): e0130847.
Libungan L.A., Slotte A., Otis E.O., Pálsson S. (2016). Otolith variation in Pacific herring (Clupea pallasii) reflects mitogenomic variation rather than the subspecies classification. Polar Biology, 39(9): 1571-1579.
Lombarte A., Lleonart, J. (1993). Otolith size changes related with body growth, habitat depth and temperature. Environmental Biology of Fishes, 37(3): 297-306.
Mehanna S., Jawad L., Ahmed Y., Abu El"Regal M., Dawood D. (2016). Relationships between fish size and otolith measurements for Chlorurus sordidus (Forsskí¥l, 1775) and Hipposcarus harid (Forsskí¥l, 1775) from the Red Sea coast of Egypt. Journal of Applied Ichthyology, 32(2): 356-358.
Nason G. (2012). Wavethresh: Wavelets statistics and transforms. R package version 4.5.
Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'hara R., Wagner H. (2013). Package "˜vegan'. Community ecology package, version 2(9): 1-295.
Osman A., Farrag M., Mehanna S., Osman Y. (2020). Use of otolith morphometrics and ultrastructure for comparing between three goatfish species (Family: Mullidae) from the northern Red Sea, Hurghada, Egypt. Iranian Journal of Fisheries Sciences, 19(2): 814-832.
Pawson M. (1990). Using otolith weight to age fish. Journal of Fish Biology, 36(4): 521-531.
Peters A., Hothorn T. (2013). ipred: Improved Predictors, version 0.9–3. R package.
Randall J.E. (1995). Coastal fishes of Oman: University of Hawaii Press. 439 p.
Ripley B., Hornik K., Gebhardt A., Firth D. (2002). Functions and datasets to support Venables and Ripley. Modern Applied Statistics with S.
Ripley B., Venables W. (2016). nnet: Feed-forward neural networks and multinomial log-linear models. R package version 7.
Rohlf F.J., Bookstein F. (1990). An overview of image processing and analysis techniques for morphometrics. Paper presented at the Proceedings of the Michigan morphometrics workshop.
Sadegh R., Esmaeili H.R., Zarei F., Reichenbacher B. (2020). Population structure of the ornate goby, Istigobius ornatus (Teleostei: Gobiidae), in the Persian Gulf and Oman Sea as determined by otolith shape variation using ShapeR. Environmental Biology of Fishes, 103(10): 1217-1230.
Tuset V., Lozano I., González J., Pertusa J., García"Díaz M. (2003). Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). Journal of Applied Ichthyology, 19(2): 88-93.
Urbanek S. (2014). Jpeg: Read and write JPEG images. R package version 0.1-8.
Warnes G.R., Bolker B., Bonebakker L., Gentleman R., Liaw W.H.A., Lumley T., Schwartz M. (2014). gplots: various R programming tools for plotting data. 2015. R package version, 2(0).
Wiff R., Flores A., Segura A.M., Barrientos M.A., Ojeda V. (2019). Otolith shape as a stock discrimination tool for ling (Genypterus blacodes) in the fjords of Chilean Patagonia. New Zealand Journal of Marine and Freshwater Research, 54(2): 218-232.