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Abstract: The giraffe cichlid Nimbochromis venustus Boulenger, 1908 is a well-known species in 

aquarium trade. The laboratory-reared electric giraffe cichlid was studied in terms of early 

morphological development and allometric growth pattern from hatching until the juvenile stage i.e. 

51 dph. Total length increased linearly from hatching until 51 dph, with a high regression coefficient. 

The yolk sac exhaustion completed throughout 15 days. Significant morphological and morphometric 

variations occurred before the yolk sac absorption and early juvenile stage by evolving the anterior 

and posterior body section which improve swimming ability and food capturing. Positive growth 

coefficient of the body and trunk lengths were occurred after inflexion point coinciding with 

development of digestive system function. Eye diameter showed negative allometry at the inflexion 

point of 9.3 mm, continuing with positive growth rate until day 51. Body shape variation in early life 

history revealed consequent development in anterior and posterior body section in preflexion phase 

and development of body and trunk length in post flexion phase to support high survival of larvae. 

The present study emphasizes ontogenic study of different species to interpret biology and ecology 

of fish in association with evolutionary biology. 

  
Introduction 

The Giraffe Cichlid, Nimbochromis venustus 

(Boulenger, 1908), is a large cichlid endemic to Lake 

Malawi in Africa (Bangerter, 2007). Juveniles of this 

species are found in shallow water near rocks while 

adults forage in deeper regions with sandy substrate. 

They usually fed small fish and invertebrates. Half-

grown individuals have been observed to remain 

motionless, partially buried in the sand, waiting for 

small fishes to come within reach. Nimbochromis 
venustus, as a mouth brooding fish (Konings, 1990; 

Snoeks and Manuel, 2004), prefers waters with pH, 

depth and temperature 7.2-8.8, 6-23 m and 25-27°C 

(Riehl and Baensch, 1996). 

Fish morphological transformation from larvae to a 

juvenile or young adult form is occurred during early 

developmental stages in a relatively short period of 

time with completion of their functional systems as a 

                                                           
*Corresponding author: Hamed Mousavi-Sabet                                                                   DOI: https://doi.org/10.22034/ijab.v6i3.525 

E-mail address: mousavi-sabet@guilan.ac.ir  

survival strategy (Osse and Van de Boogart, 2004). In 

addition, study of the allometric growth patterns 

during early developmental stages of different teleost 

species helps to corroborate the importance of 

morphological development and growth patterns of 

young fish, by providing a better understanding of 

early life events (Fuiman, 1983; Khemis et al., 2013), 

their priorities during the early growth, and size-

related behavior and ecology (Gisbert, 1999). In this 

regard, this study aimed to describe early 

morphological development and allometric growth 

pattern of N. venustus. 
 

Materials and Methods 

The broodstocks of N. venustus were obtained from a 

local ornamental fish farm in February 2015 and 

transferred to a rearing glass aquarium at the fisheries 

laboratory of University of Guilan, Guilan Province, 
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Iran. A total of 20 breeding pairs were transferred to 

breeding aquaria for spawning. The eggs were kept in 

glass aquaria with water temperature of 26-28°C and 

after hatching, larvae were transferred to new aquaria 

for rearing. Rearing conditions were 27±0.8°C, 

6.49±0.15 mg/l dissolved oxygen, 12L:12D artificial 

photoperiod and light intensity of 500 lux at the water 

surface (Mousavi-Sabet, 2011). Newly hatched larvae 

were fed with Artemia nauplii and micro-worms from 

1-5 dph, then with a mixture of nauplii and 

commercial food pellets (Biomar A/S; 58% protein, 

15% lipid) twice a day from 6-51 dph. 

Daily sampling were randomly carried out from 1-

5 dph (day post hatching), followed every other day 

till 51 dph from the same larval batch. Larvae were 

sacrificed with an overdose of MS222 (35 mg ml-1) 

and fixed in 5% buffered formalin solution. Then, their 

left sides were photographed using a stereomicroscope 

equipped with a Cannon camera with a 5 MP 

resolution. The following morphological 

characteristics were measured from the digital images 

to the nearest 0.01 mm using Image-J software 

(version 1.240): body length (BL), head length (HL), 

head depth (HD), trunk length (TrL), Tail length 

(TaL), maximum body depth (BD), eye diameter (ED) 

and snout length (SnL). Measurement method 

followed Leis and Trnski (1989). Ontogenic 

development followed criteria as described by Balon 

(1977, 1986, 1999). Specimens were examined for 

general morphology, pigmentation, and fin 

development under a Leica MC5 Stereozoom 

microscope. 

The allometric growth patterns were calculated as 

a power function of total length using non-

transformed data: Y=aXb, where (Y) was the 

dependent variable, (X) the independent variable, (a) 

the intercept and (b) the growth coefficient. Isometric, 

positive and negative allometric growth patterns are 

indicated by b=1, b>1, b<1, respectively. The 

inflexion points of growth curves were determined 

according to Fuiman (1983) and Van Snik et al. 

(1997). Drawing graphs was performed in MS-Excel 

2013 (Microsoft Corporation) and data analysis in 

Past (ver 2.17). 

 

Results 

General morphology: Total length of 

N. venustus increased linearly from hatching up to 51 

dph (Fig. 1). BL of day 0 larvae ranged 8.23-8.32 

(mean±SD: 8.28±0.04) mm (n=5) and reached 27.39-

30.92 (mean±SD: 28.93±1.08) mm on day 51 (Fig. 2, 

Table 1). The mouth and anus were closed at hatching. 

Newly hatched larvae had a large oval yolk sac (with 

horizontal length of 3.05±0.10 mm).  

The head initially was separated from the yolk sac 

(Fig. 2a) at hatching, upper and lower jaws formed in 

day 1, mouth opened, and anus hardly seen on day 2. 

Formation of the anal-fin with visible rays and starting 
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Figure 1. Linear regression between total length (mm) and days after hatching of laboratory-reared Nimbochromis venustus from days 0 to 51 after 

hatching. 
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notochord flexion were observed on day 3 (Fig. 2c). 

Operculum appeared on day 4 (Fig. 2d), myomeres 

were visible from hatching to day 11. Lateral line was 

appeared on day 15, yolk moved dorsally to above 

abdominal cavity beside upper base of the pectoral fin 

(Fig. 2h), completely absorbed by day 15.  

Head length calculated 22-25 %BL in day 1 and 

increased with growth, reaching 28–30 %BL on day 

51 (Fig. 3a). The proportion of body depth, regardless 

of the yolk sac depth, increased continuously to over 

27 %BL on day 51 from 12 %BL at hatching (Fig.3b). 

Trunk length was nearly constant at all stages (40–44 

%BL) (Fig. 3c). Eye diameter slightly decreased by 

day11 (11- 8 %BL) and thereafter reached to 11%BL 

on day 51 (Fig. 3d). Snout length increased 

continuously up to day 51 from 2 to 7 %BL (Fig. 3e). 

Tail length showed increasing trend as 24-32% by day 

9 then decreased around 29% on day 51. 
The soft rays of the caudal fin formed from 

hatching (with about 16 rays) (Fig. 2a), and finalized 

with 26 soft rays on day 51(Fig. 2i). The other fins not 

observed on day 1. Dorsal-fin soft rays appeared on 

Figure 2. Early developmental stages of giraffe cichlid Nimbochromis venustusa. (a) Newly hatched embryo 1 day after hatching, (b) two day after 

hatching (dah), (c) 3 dah, (d) 4 dah, (e) 5 dah, (f) 7 dah, (g) 11 dah, (h) 15 dah, and (i) 51 dah; Completion of fin rays and juvenile formation after 

day 15. Scale bar=1 mm. 
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day 2 (Fig. 2b), attained 13 spines in anterior part on 

day 11 (entirely 26 rays) (Fig. 2g), and it was constant 

thereafter. Anal-fin soft rays appeared on day 3 (Fig. 

2c) attaining 3 spines in anterior part on day 9 (entirely 

12 rays) and was constant thereafter. Pelvic and 

Pectoral find soft rays appeared on day 11 with 13 and 

10 rays, respectively (Fig. 2g).  
Allometric growth: The head length allometric growth 

pattern was negative (b= 0.84, R2=0.68) up to 9 dph, 

then turned to positive (b=1.125, R2=0.96) up to day 

Table 1. Linear growth of larvae of the Nimbochromis venustus in the experiment. Above line: the mean value and standard deviation (in 

parentheses); under the line: limit of variations of the parameter, (TL: Total length n: the number of specimens). 

Age, days TL±SD/min-max (mm) n 

1 8.28 (0.04)

8.23 − 8.32
 

5 

11 13.31 (0.56)

12.74 − 13.78
 

5 

21 15.78 (0.64)

15.10 − 16.40
 

5 

31 18.50 (1.70)

16.78 − 20.19
 

5 

41 22.39 (0.53)

21.77 − 22.73
 

5 

51 28.93 (1.80)

27.39 − 30.92
 

5 

 

Figure 3. Proportions of (a) head length (HL), (b) body depth (BL), (c) trunk length (TrL), (d) eye diameter (ED), (e) snout length (SnL), and (f) 

tail length (TaL) to Total length (TL) in young laboratory-reared Nimbochromis venustusa. 
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51 (Fig. 4a). The body depth growth coefficient was 

positive throughout the entire study period with 

decreasing trend, separated with an inflexion point on 

day 9 (Fig. 4b). The growth pattern of the trunk length 

(TrL) was allometrically negative ((b=0.78, R2=0.77) 

until the ninth day at the 10.8 mm of total length (Fig. 

3b). The growth pattern of TrL positively increased 

until day 51 (Fig. 4c). The growth of eye diameter 

(ED) showed negative allometric growth pattern 

(b=0.27 R2=0.13) by day 11 followed positive 

allometric growth pattern (b=1.16 R2=0.8) by day 51 

(Fig. 4d). Snout length biphasic pattern of the growth 

pattern showed a strong positive allometry in relation 

to total length (b=2.37, R2=0.58), following days 

displayed positive growth with decreasing gradient to 

the previous phase (b= 1.31, R2=0.83) (Fig. 4e). Tail 

length grew negatively by day 9 and positively until 

day 51 (b=1.37, R2=0.93; b=0.77, R2=0.89, 

respectively) (Fig. 4f). 
Pigmentation: The newly hatched fry are transparent, 

grayish in color and slender with melanophores on 

head. Melanophore deposition in eyes was observed 

on 1 dph (Fig. 2a). The yolk sac in the anterior part, 

operculum, dorsal part of the body and upper surface 

Figure 4. Allometric growth equations and relationship between different measured body proportions with total length in Nimbochromis venustusa 

during early stages of development (from hatching up to day 51). (a) Head length, (b) body depth (BL), (c) trunk length (TrL), (d) eye diameter 

(ED), (e) snout length (SnL), (f) tail length (TaL). The dashed line represents the inflexion point of growth. Power regression equations are displayed 

(P<0.05 for all regression equations; exception was the first phase of eye diameter R2=0.138; P>0.05). 
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 of eyes had a bit dispersed punctate pigment on day 1 

(Fig. 2a). Melanophres emerged some dispersed 

melanophores on lateral line (on myomeres) with low 

density on day 2 (Fig. 2b). Melanophores initially 

were few and increased in number with growth in the 

following days. Melanophores were seen as colony in 

some area on lateral line and appeared around anal fin 

on day 7 (Fig. 2f). Few melanophores observed on 

snout on day 11(Fig. 2g) and then increased for the 

following days. Moreover, the concentration of 

melanophores increased on operculum and lateral 

body on day 13. 

 

Discussion 

In the present study, the newly-hatched free embryos 

of N. venustus were transparent, grayish and slender 

thereafter with increasing chromatophores. The 

pigmentation provides camouflage against predators 

or distracting flickering effect during swimming 

(Moser, 1981). Also, there has been shown in many 

species such as Pleuronectes platessa larvae and 

Atlantic halibut, Hippoglossus hippoglossus that 

pigmentation could be positively related to 

metabolism, some hormones, and growth factor 

(Christensen and Korsgaard, 1999; Solbakken et al., 

1999), genetic and environmental factors (Urho, 

2002). Pigmentation pattern in N. venustus like other 

Cichlidae showed differentiation compared to other 

species (Maan and Sefc, 2013; Ahmadi et al., 2013). 

Furthermore, it is assumed that identical pigmentation 

can imply similar function while body coloration is 

inextricably referred to diversification as well as 

responding to both natural and sexual selection 

(Meyer, 1993; Kocher, 2004; Maan and Sefc, 2013). 

Yolk sac depletion was completed on 15 dph in the 

present study. It is assumed that N. venustus has 15-

day preparatory period for shifting from endogenous 

to exogenous energy dependent periods. The previous 

studies have showed longer period for shifting from 

endogenous to exogenous feeding as observed in 

Clarias gariepinus (Matsumoto et al., 2001), climbing 

perch, Anabas testudineus (Morioka et al., 2009a) and 

snakeskin gourami, Trichogaster pectoralis (Morioka 

et al., 2009b). In the current study, complete 

exhaustion of yolk sac on the day 15 coincided with 

transformation of free embryo to juvenile supporting 

its survival in environment conducting the importance 

of evolutionary ecology during early life history 

(Kamler and Keckeis, 2000). 

Based on the results, the lateral line was appeared 

on day 15 coincident with yolk depletion and 

exogenous feeding. It is supposed that lateral line 

plays a critical role in the prey/ predator detection 

(Coombs and Montgomery, 1994; Coombs et al., 

1996) and recognition of the low frequency movement 

of water (Harries and Van Burgeijk, 1962) in fish 

during early life history especially with the beginning 

of exogenous feeding which need further tools for 

survival against predators to interact better with their 

environment. In addition, as the yolk sac depletion 

increases, external morphological efforts manage to 

optimize the localization and uptake of prey in favor 

of fish survival in the early life stage (Comabella et 

al., 2013).  

Food capturing and predator avoidance are critical 

issues contributed to essentially related organogenesis 

for feeding (Porter and Theilacker, 1999; Makrakis et 

al., 2005) and swimming (Murphy et al., 2007; 

Huysentruyt et al., 2009). Development of organs 

associated with these functions must occur in a mutual 

balance (Osse et al., 1997; Rodríguez-Mendoza et al., 

2011; Saemi-Komsari et al., 2018). Nimbochromis 
venustus larvae exhibited positive growth in tail 

length by day 9 followed by negative allometric 

growth pattern later on. The positive allometry of tail 

has been reported in sturgeon (Gisbert and Doroshov, 

2006), croaker (Shan and Dou, 2009) and catfish 

(Huysentruyt et al., 2009). Tail length positive growth 

coefficient in the early life history could enhance 

swimming capacity considering the changes in 

swimming style from anguilliform to subcarangiform 

(Van Snik et al., 1997; Osse and Boogaart, 1999; Osse, 

1990). In our study, the pelvic and pectoral fins 

developed after unpaired fins. In more developed 

fishes, including teleost, the pelvic fin with trimming 

function decreases the pitching and up-ward body 

displacement in fish effort of braking (Murata et al., 

2010). In many other fish species, the maneuverability 
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function of the effective swimming in the favor of 

feeding has been reported (Comabella et al., 2013). 

The trunk and body allometric growth pattern of 

N. venustus was negative by day 9 and positive till 51 

dph. The negative growth pattern of the trunk during 

the first stages of development in N. venustus has been 

reported for most fish species to develop primary 

functions (feeding, respiration and locomotion) 

related to the anterior and posterior body sections prior 

to the abdominal region (Osse and van den Boogart, 

1995). Trunk allometric growth increases after the 

development of the head and tail (Osse et al., 1997; 

van Snik et al., 1997; Gozlan et al., 1999) that is 

considered as the priority of digestive system 

development.  

The head growth showed negative pattern by day 9 

in N. venustus. Thereafter, when the larvae were less 

dependent on endogenous feeding, positive growth 

coefficient was observed. It is assumed that positive 

growth of head can describe the development of nerve, 

sensory and respiratory organs as well as feeding 

systems essential for exogenous feeding (Gisbert and 

Doroshov, 2006). Negative growth pattern (b=0.2) of 

eye diameter by day 11 followed by positive growth 

pattern afterward. The morphological variation toward 

positive growth of eye diameter could explain 

visionary essence after shifting to exogenous feeding 

as vision provide better spatial orientation in 

swimming (Gisbert, 1999; Petereit et al., 2008). 

In conclusion, the present study highlights the 

preference of morphogenesis as energy demanding 

transformation to improve the strategy of survival 

considering the respective importance of 

functionality. 
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