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Abstract: A unique marine productive ecosystem of the seagrass beds on Thailand’s Libong has 

been identified, which may raise environmental concerns. However, limited data on the health status 

of marine animals, especially gastropods, as a good sentinel species, has been found. Therefore, the 

present study provides a detailed observation of the male reproductive health and spermatogenesis 

of three gastropod species, including Polinices mammilla, Cerithidea cingulata, and Nerita balteata 

as sentinel species, which are investigated using morphology and histological methods. All samples 

were collected randomly from seagrass areas with healthy and unhealthy conditions in April 2021. 

The samples’ male gonads were then investigated using histological methods. The results indicate 

that the species shared testicular structure and spermatogenesis in different stages (spermatogonium 

to spermatozoa). Additionally, their spermatogenic stages were not significantly different in size and 

diameter. Consequently, the structure of brown cells was common and distributed among the 

spermatogenic stages. Brown cells have been reported in animals that are under stress or unhealthy, 

such as in seagrass areas with unhealthy conditions. These results suggest that environmental and 

seagrass loss and the threatened seagrass habitats on Libong Island may impact aquatic animal health, 

necessitating long-term monitoring in further studies.  

 

 
 

Introduction 

The male reproductive system of mollusks is typically 

composed of a testicular structure and a duct, like that 

found in vertebrates (Chen et al., 2015). Several 

investigations have shown that the spermatogenetic 

stages are highly complex, with spermatogonia 

undergoing proliferation and differentiation (mitosis 

and meiosis), spermatocytes, spermatids, and finally 

producing mature spermatozoa (Franco et al., 2011; 

Shepardson et al., 2012; Chen et al., 2015). Lunetta 

and Damiani (2002) studied the spermatogenesis of 

Dendropoma petraeum in which five spermatogenetic 
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stages (from spermatogonium to spermatozoa) were 

recorded in the follicle. There is a great number of 

studies on gastropod spermatogenesis (Shepardson et 

al., 2012; Chen et al., 2015), including Trophon 

geversianus (Giménez, 2013) and Littorina saxatilis 

(Demin et al., 2019). To develop reproductive 

knowledge, it is necessary to assess the reproductive 

strategies, sperm quality and quantity, and spawning 

events throughout the reproductive health status 

(Mylonas et al., 2010; Palma et al., 2019).  

Aquatic animals can be used as sentinel marker 

species to monitor environmental health and change 
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(Carew et al., 2013; El-Gammal et al., 2016). Because 

of their small size, persistence, and proclivity to 

bioaccumulate contaminants, aquatic invertebrates are 

widely accepted as an appropriate sentinel candidate 

species to monitor changes in ecological habitats 

(Lazorchak et al., 2003; Zorita et al., 2007; Chiarelli 

and Roccheri, 2014). In many earlier investigations of 

the environmental problems of coastal sites and 

estuaries, the gastropod has been proposed as a global 

regulatory framework for risk assessment (Sousa et 

al., 2018; Krupnova et al., 2018). Gastropod mollusks 

have been used to assess the effect of potentially toxic 

metals in all marine ecosystems (Zorita et al., 

2007). Guidelines and recommended candidate 

species for use as biological markers or biomarkers 

have been reported (NRC, 1991). Several biomarkers 

are selected, with a focus on histopathological 

biomarkers. This biomarker is the most accurate, 

robust instrument for health and welfare monitoring of 

aquatic animals used in research (Ayas et al., 2007; 

Dietrich and Krieger, 2009; Senarat et al., 2015). 

Given their significance, the tissue alterations of 

mollusks are associated with the effects of numerous 

environmental stressors (Fernández San Juan et al., 

2020).  

One of the threats to Libong Island, Thailand, is the 

loss of seagrass in combination with the persistent 

properties of sediment microplastic pollution and 

marine debris (Pradit et al., 2020). The expected 

impact on the loss of marine invertebrate biodiversity 

in terms of their health and fitness loss has been 

proposed (Reynoldson and Metcalfe-Smith, 1992), 

however until present, the male reproductive health 

status of gastropods from the seagrass area of Libong 

Island has not been determined. Accordingly, the 

present study examines aspects of male reproductive 

health and a series of detailed spermatogenesis of 

gastropods, including Polinices mammilla, Cerithidea 

cingulata, and Nerita balteata as sentinel species, to 

compare the healthy and unhealthy conditions of 

Libong Island. These species are significant to the 

ecology of the Libong coast. Once baseline values are 

established, it is possible to provide adequate 

reproductive biology and project monitoring data to 

manage the seagrass areas of Libong Island in support 

of fisheries productivity and food security.  

 

Materials and Methods 

Gastropod samples and study areas: In April 2021, 

we selected categorizing sites from Libong Island, 

Thailand, namely unhealthy and healthy seagrass 

areas. Representative adult gastropods, including P. 

mammilla, C. cingulata, and N. balteata were 

randomly sampled by hand or visual observation. A 

total of 30 pooled samples from each site were 

obtained and then euthanized with a rapid cooling 

shock (Wilson et al., 2009). The Animal Care and Use 

Committee of the Faculty of Science and Fisheries 

Technology, Trang Campus, Rajamangala University 

of Technology Srivijaya (Protocol Review No. IAC 

13-03-64) made strict recommendations regarding 

animal treatment. 

Morphology and histological methods: All 

gastropod bodies were morphologically examined 

using a stereo microscope to observe the male 

reproductive localization. They were preserved for 

approximately 48 hours at ambient temperature with 

modified Davidson's fixative for histology and 

histopathological examination. Small pieces of fixed 

specimens were dissected and processed using 

standard histological procedures (Presnell and 

Schreibman, 1997; Suvarna et al., 2013). Paraffin 

blocks were sectioned at 4 μm using a standard rotary 

microtome (Leica, Germany) and routinely stained 

with Harris' hematoxylin and eosin (H&E and 

Periodic acid–Schiff (PAS)). A light microscope was 

used to examine the classification and histological 

structure of the testis, while their histopathology and 

photographs were taken using a Panoramic Digital 

Slide Scanner (3DHISTECH, Germany).  

Data analysis and statistical analysis: It is important 

to note that the number of brown cells and size of 

spermatogenetic stages (from the spermatogonia to 

spermatids) were identified within the seminiferous 

tubule at 40X magnification and oil immersion. Ten 

seminiferous tubules from each gastropod species 

were randomly chosen and presented as mean±SD. 

The nonparametric Kruskal-Wallis and Tukey–
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Kramer HSD tests were used to compare gastropod 

species. The level of significance was set at P≤0.05. 

 

Results and Discussions 

Testicular structure and cell morphometry: The 

testicular structure of mollusca has been reported to 

follow a linear development pattern similar to that of 

mammals. It is generally classified into testicular 

acinus and spermatogenesis, which has five stages: 

spermatogonium, primary spermatocyte, secondary 

spermatocyte, spermatid, and spermatozoon (Healy, 

1991; Franco et al., 2011; Shepardson et al., 2012; 

Chen et al., 2015).  

The results showed that the testicular morphology 

of the sampled gastropods was similar to the previous 

description (Figs. 1A-B). It was possible to clearly 

distinguish the testicular morphology as a white color 

from the digestive gland (termed the hepatopancreas) 

in the gastropod coiling due to the color difference, 

which is referred to as “the gonad-digestive-gland 

complex” (Figs. 2A-B). This feature is similarly found 

in Tritia mutabilis (Mallet et al., 2021), Spurwinkia 

salsa (Hershler and Ponder, 1998), and Pomacea 

canaliculata (Wu et al., 2011).  

Histologically, the testis is surrounded by the 

testicular capsule, which consists of numerous 

seminiferous tubules or acini (High magnification, 

hermaphroditic features (Figs. 2A, C). Clusters of 

Figure 1. The internal anatomy of the gonad location (arrows) between (a) Cerithidea cingulata and (b) Polinices mammilla (Scale bar = 1 cm). 

 

Figure 2. Light microscopic level showing the male reproductive 

system of the representative gastropod Nerita balteata. (A) The 

overall histology of the testis (Tt) was located close to the digestive 

gland (Dg) with its area (inner arrow). This organ was surrounded 

by the testicular capsule (outer arrow). (B-C) The seminiferous 

tubules (St) in the testicular tissue (Tt) were among the adipose 

tissue (At). Between the seminiferous tubules was separated with 

the connective tissue (CNT). (D) The testicular duct was found with 

the seminiferous tubules (St).  Abbreviation: Dg = digestive gland, 

Td = testicular duct [Stanning method: A-B, D = Harris' 

hematoxylin and eosin (H&E); C = Periodic acid–Schiff (PAS)]. 
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spermatogenic cells in the seminiferous tubules (Fig.  

Figs. 3B-D). The studied gastropods lacked 2A, C) 

were separated by the adipose and connective tissues 

(Fig. 2C). A comparable testicular structure was 

Figure 3. Light microscopic level showing the comparative testicular tissue including Polinices mammilla (A), Cerithidea cingulata (B) and Nerita 

balteata (C-J). (A-D) The prominent of spermatozoa (Sz) in the seminiferous tubules was visible. (E-J) The spermatogenesis was considered to be 

a germinal epithelium. High magnification showed that it is classified into the spermatogonium (Head arrows), primary spermatocyte (Ps), 

secondary spermatocyte (Ss), spermatids (St) having three sub-stages including the early spermatid (Est), middle spermatid (Mst) and late spermatid 

(LSt) and spermatozoa (Sz). Sperm morulae (double asterisk) were identified. Abbreviation: Dg = digestive gland, He = head, Sc = spermatogenic 

cell, Tai = tail, large arrow = Sertoli cell, asterisk = cytoplasm, small arrows = cell division [Stanning method: A-J = Harris' hematoxylin and eosin 

(H&E)].       
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described for Trophon geversianus (Giménez, 2013). 

Moreover, the testicular duct and its prominent 

smooth muscle were observed (Fig. 2D).  

Figure 2D clearly shows the spermatogenic 

differentiation in the clusters of varying tubules 

between the sampled gastropods. Different 

spermatogenetic stages were identified, reflecting 

male reproductive maturation (Figs. 3A-E). The 

spermatogenic epithelium was arranged disorderly 

along the periphery of the tubule (Fig. 3E), as was also 

observed in Radix balthica and Lymnaea stagnalis 

(Tair-Abbaci et al., 2017).  

Spermatogonia were formed and lined with the 

basement membrane near the Sertoli cells (Fig. 3G). 

The examinations showed that the Sertoli cells had a 

triangular nucleus (Fig. 3G). As previously indicated, 

Sertoli cells are essential to the nutrition and 

production of steroid hormones from spermatogenic 

cells (de Jong-brink et al., 1977). The spermatogonia 

presents an oval nucleus shape with slight chromatin 

and is surrounded by a slightly acidophilic cytoplasm 

(Fig. 3G). In the next stage of spermatogenesis, the 

primary spermatocyte is processed under the meiotic 

stage. This is characterized by cells with increasing 

nucleus size, chromatin compaction, and a small 

cluster of chromatins (Fig. 3E). The transformation 

process of secondary spermatocytes was found (Figs. 

3E-F). An increased condensation of chromatin can be 

Figure 4. Light microscopic level showing the feature of the brown cell in the representative gastropod Nerita balteata (A) The distribution of the 

oval shape of the brown cell (Bc) among the spermatogenic stages. (B) The PAS reaction method was shown in the brown cell (arrows) and some 

spermatozoa (red asterisk). (C-D) High magnification revealed that the brown cell (Bc) had brown pigments, which also reacted to the PAS reaction. 

E: PAS reaction with the head spermatozoa (arrows). F-G: The Melanomacrophage centers (arrows) with highly pigmented color were aggregated. 

[Stanning method: A, C, and E-F = Harris' hematoxylin and eosin (H&E); B, D, and E = Periodic acid–Schiff (PAS)].  
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observed in this stage. However, its size was 

moderately reduced (Fig. 3F). Some cells were 

separated during the miotic division close to the end 

of the process (Fig. 3G).  

Interestingly, the acidophilic cells with their small 

nucleus were distributed as a cluster of about 3-4 cells, 

termed “multinucleated cells”, possibly the sperm 

morula (Figs. 3G-I). This work is the first report on 

gastropods, while most previous studies reported on 

bivalves (Heard, 1975; Chatchavalvanich et al., 2006; 

Shepardson et al., 2012). The occurrence of sperm 

morula may be due to several factors (Shepardson et 

al., 2012), such as a sign of microhermaphroditism 

(Grande et al., 2001) or as a potential way to supply 

nutrients (Coe, 1943). Shepardson et al. (2012) 

recommended that a multinucleated sperm morula is 

in an intrinsic process of an “atypical 

hermaphroditism”. In contrast, some freshwater 

mussels’ sperm morula production was related to 

stress due to ecophysiological pressures (Bauer, 1987; 

Ghiselin, 2006).  

During spermatogenesis, steps of spermatids are 

represented in Figures 3H-J. The developmental stage 

of early spermatids is an oval shape with clearly 

condensed chromatin (Fig. 3H). It then transferred to 

the mid-spermatid. An elongation event of this stage 

began as the nucleus (Fig. 3J). Late spermatids have 

an extended head and a short tail (Fig. 3H). 

Conspicuous spermatozoa with a head and elongated 

tails were detected in the middle area of the tubule 

(Fig. 3I). 

Gastropod species have a higher tendency for 

spermatogenesis, yet their sizes may be connected to 

the species, suggesting distinct structural and 

functional relationships (Roosen-Runge et al., 1977). 

In this study, we show the morphometric calculations 

of spermatogenic stages (from spermatogonia to 

spermatids) in each sampled species, presented in 

Table 1, and the size of each dramatically decreased. 

There was no significant difference in spermatogenic 

stages among the studied gastropod species (P<0.5, 

Table 1).  

The presence of brown cells and histopathology 

between sites: The brown cell distribution was clear 

in all sampled gastropods throughout the 

Gastropods 

Spermatogenesis stage (Mean ± SE) 

Spermatogonia  
Primary 

spermatocytes 

Secondary 

spermatocytes 
Spermatids 

Polinices mammilla 4.71±0.07 3.84±0.03 2.77±0.04 1.69±0.03 

Nerita balteata 4.76±0.07 4.14±0.07 2.60±0.05 1.25±0.03 

Cerithidea cingulata 4.28±0.09 4.30±0.07 3.05±0.06 1.28±0.04 

 

Table 1. The morphometric features of the spermatogenic stages of gastropods including Polinices mammilla, Cerithidea cingulata, and Nerita 

balteata from unhealthy and healthy seagrass sites. 

Figure 5. Light microscopic level showing the presence of parasites 

and histopathology of the representative gastropod Nerita balteata 

(A) Low magnification showed parasitic-populated infection (Pi). 

(B) The spermatogenic degeneration (asterisks) in the seminiferous 

tubule was observed. (C) The existence of the infected parasite, as 

possible to trematodes (T). This parasite was encapsulated by thin 

connective tissue (double asterisks) (Abbreviation: Tt = testicular 

testis, and dash line = The separated area between the parasitic 

infection (Pi); Stanning method: A-C = Harris' hematoxylin and 

eosin (H&E)). 
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spermatogenic stage (Figs. 4A-C). High magnification 

showed that the round or oval brown cells had 

microscopic brown granules in their cytoplasm (Fig. 

4C), which positively reacted with the PAS reaction 

(Fig. 4D).  

Figures 4e and 5 compare the histopathological 

change (spermatogenic degeneration) and 

unidentified parasites (Figs. 5A-C) mentioned 

previously. The brown cells differed significantly 

(P<0.05, Fig. 6). This cell is mostly used as a 

biological indicator of environmental problems in 

mollusks (Gosling, 2003). Brown granules in brown 

cells are well acknowledged as the primary proteolytic 

compartments for toxic elimination and foreign body 

removal (Gosling, 2003). This could be associated 

with exposure to environmental pollution (Zaroogian 

et al., 1995, 2000; Zorita et al., 2006). The above-

mentioned aspects may be related to environmental 

factors in the seagrass environment and the unhealthy 

seagrass site. Like many mollusca stocks in polluted 

areas (Zorita et al., 2006), we hypothesize that the 

seagrass environment could influence the health of the 

studied gastropods. Regular and proper monitoring of 

the environmental parameters on Libong Island is 

required.  

According to both sample sites, some spermatozoa 

existed in Figures 4E, but the stage is still unclear. 

Melanomacrophage centers (MMCs) were also 

discovered as a distinctive grouping of pigment-

containing cells (Figs. 5F-G). One possibility is that 

the sampling gastropods would initially participate in 

both the innate and adaptive arms of the immune 

response (Roberts, 1975; Steinel and Bolnick, 2017), 

with each cell tasked with destroying, detoxifying, or 

recycling foreign components (Steinel and Bolnick, 

2017). In this case, the stressful environment of 

seagrass areas on Libong Island may be due to 

pollution from fishery activities, as supported by the 

critical report (Pradit et al., 2020). 

This study provides new information on the 

reproductive biology of gastropods dwelling on 

Libong Island. It revealed that the diameter of primary 

and secondary spermatocytes varied among the 

sampled gastropods, implying a reproductive 

function. Interestingly, prominent brown cells were 

found, especially at the unhealthy seagrass site. As 

prior observations have shown, this phenomenon is 

most likely linked to estuarine habitats' polluted and 

stressful conditions.  
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