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Abstract: Microplastics (MPs) are one of the biggest environmental problems threatening aquatic 

life. The accumulation of MPs in the body of aquatic animals can play a role in transferring these 

pollutants into the food chain. These pollutants can significantly affect the physiology of aquatic 

animals. In this study, the bioaccumulation capability of MPs in the body of freshwater crayfish, 

Astacus leptodactylus has been evaluated. For this purpose, crayfish were exposed to 0, 500, and 

1000 µg L-1 of polyethylene MPs (PE-MPs) for 28 days. Then, the accumulation of MPs in 

hemolymph, hepatopancreas, and intestine of crabs was investigated by Fourier transform infrared 

spectroscopy (FTIR). Bioaccumulation of PE-MPs in the hemolymph, hepatopancreas, and intestines 

was observed in the crayfish exposed to PE-MPs. This study showed that FTIR is a suitable method 

for identifying and measuring MPs in aquatic organisms. 

  

Introduction 

The increase in the global production of plastics has 

caused a large amount of plastic waste to be released 

into the environment every day. Wastes and plastic 

wastes eventually enter aquatic ecosystems through 

washing or sewage. Therefore, aquatic ecosystems, 

especially seas and oceans, are the centers of the 

accumulation of plastic waste in the world. Plastic 

waste's physical and chemical decomposition causes 

the larger pieces to be broken into smaller pieces 

(Chamas et al., 2020). From this point of view, 

microplastics (MPs) of different sizes are one of the 

most obvious plastic pollutants in aquatic ecosystems 

(Guzzetti et al., 2018; Alimba and Faggio, 2019; 

Strungaru et al., 2019; Prokić et al., 2021). MPs can 

affect biological dynamics and biodiversity in aquatic 

ecosystems. The change in physical and chemical 

characteristics and the release of plasticizers from 

MPs have caused an increase in their risk compared to 

virgin plastic polymers (Karami et al., 2016; Liu et al., 

2020). In recent years, the various types of MPs, 

including polystyrene (PS), polypropylene (PP), 
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polyethylene (PE), polyethylene terephthalate (PET), 

polyvinyl chloride (PVC), and polyamide (PA) in 

different forms, have been reported in aquatic 

ecosystems (Erni-Cassola et al., 2019; Schwarz et al., 

2019). Polyethylene (PE) has been classified as a 

major source of MPs in aquatic and terrestrial 

environments (Wang et al., 2018; Sun et al., 2021). 

Despite the variety of available polymers, about 45% 

of global production is made with polyethylene.  

MPs can enter the body of aquatic animals through 

the digestive or respiratory system and are distributed 

in the body through the blood (Banaee et al., 2021; 

Dey et al., 2021). The exposure of aquatic organisms 

to plastic waste can have various consequences (Paul-

Pont et al., 2016; Chen et al., 2020; Banihashemi et 

al., 2022). Metabolic damage, oxidative stress, 

dysfunction of the immune system (Espinosa et al., 

2017, 2019; Tang et al., 2018; Banaee et al., 2019b;) 

and change in intestinal microbial diversity (Lu et al., 

2018), growth inhibition (Besseling et al., 2014; Au et 

al., 2015), reduced growth (Della Torre et al., 2014), 

reduced feeding activity (De Sá et al., 2015) and 
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abnormal behavior (Rist et al., 2016), physical damage 

in the digestive system (scratching, perforation, and 

obstruction), hepatotoxicity (Nematdoost Haghi and 

Banaee, 2017; Huang et al., 2021) and 

bioaccumulation of MPs in various tissues (Dey et al., 

2021) have been reported in aquatic animals exposed 

to MPs. 

Crustaceans, as aquatic scavenger organisms, may 

expose to MPs. Thus, these animals are an excellent 

indicator to assay MPs effects. Due to its feeding 

habits, the freshwater crayfish is one of the best 

biological indicators for monitoring the pollution of 

aquatic ecosystems (Hong et al., 2018; Banaee et al., 

2019a, 2020). Therefore, the biological response of 

these crustaceans to environmental pollution can 

reflect the health status of aquatic ecosystems. 

Narrow-clawed crayfish, Astacus leptodactylus 

(Astacidae: Malacostraca), is a freshwater crustacean 

found naturally and widely in some lakes, pools, and 

rivers in northwestern Iran. In recent decades, this 

species has been introduced to many dams and internal 

lakes of Iran. Therefore, A. leptodactylus was selected 

as a model organism in this study and exposed to 

different concentrations of MPs to understand the 

effect of MPs on it. 

 

Materials and Methods 

This study was conducted from September to 

December 2021 at the Department of Aquatic Health 

and Diseases, Faculty of Veterinary Medicine, Shiraz 

University, Iran. The Birjand and Shiraz Universities' 

Animal Ethics Committee approved all experimental 

procedures. 

Freshwater crayfish, A. leptodactylus of both sexes 

weighing 42.11±0.31 cm and length 10±6.23 g, were 

caught from local waters (Heft Brom, Shiraz) and 

transported to the laboratory. Before starting the 

experiment, the crabs were adapted to the laboratory 

conditions (15±2°C, pH 7.2±0.3, with dissolved 

oxygen 8.2±0.6 mg/L, and under a photoperiod (14 

light: 10 dark) cycle, electrical conductivity 

693.85±174 μS cm and salinity 0.3±0.102 g/L) for two 

weeks. During the acclimatization period, the crayfish 

were fed formulated shrimp feed (Beyza Feed 

Company, Shiraz, Iran: 45-55% protein, 10-11% lipid, 

20-30% carbohydrate, 1.5-2% fiber), twice per day. 

The surplus food and fecal matter were removed from 

each aquarium, and water was renewed daily by 

adding fresh water. 

Ninety adult crayfish were randomly introduced to 

nine aquariums (10 crayfish per aquarium) to carry out 

three experimental treatments (with three independent 

replicas). The crayfish were divided into three 

experimental groups and exposed to 0.0, 500, and 

1000 µg.L-1 PE-MPs for 28 days. During the 

experimental periods, crayfish were fed two times 

daily, while crayfish were starved for one day before 

taking the sample.  

After the experimental procedure, 12 crayfish from 

each treatment were sampled and anesthetized on ice. 

Hemolymph was acquired from the sternal artery by a 

sterile syringe containing Alsever's solution adjusted 

for A. leptodactylus as the anticoagulant (Banaee et 

al., 2019). After the autopsy, the hepatopancreas of the 

crayfish was separated and placed in liquid nitrogen. 

Next, the hemolymph and hepatopancreas samples 

were then dried in a freezer dryer. Subsequently, 

polyethylene (MPs) was detected in the tissues by 

FTIR Spectrometer (Bruker). FTIR could detect the 

high density of polyethylene in the 1445-1650 

wavenumber (cm-1) (Li et al., 2022). 

 

Results  

FTIR results are presented in Figures 1-3. The FTIR 

spectrum showed the presence of polyethylene MPs in 

the hemolymph and hepatopancreas of crayfish. The 

change in FTIR peaks in the wavenumber range of 

717, 1600, 1680, and 2928 (cm-1) indicated the 

presence of polyethylene MPs. Furthermore, these 

results prove that MPs could penetrate other vital 

organs such as the hepatopancreas after entering the 

hemolymph. The difference between the FTIR peaks 

in the experimental groups treated with different 

amounts of MPs and the standard may indicate the 

existence of differences in the concentration of MPs in 

hemolymph and hepatopancreas. 

FTIR results are presented in Figures 1-3. The 

FTIR spectrum showed the presence of polyethylene 
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MPs in the hemolymph and hepatopancreas of 

crayfish. The change in FTIR peaks in the 

wavenumber range of 717, 1600, 1680, and 2928 (cm-

1) indicated the presence of polyethylene MPs. 

Furthermore, these results prove that MPs could 

penetrate other vital organs such as the 

hepatopancreas after entering the hemolymph. The 

difference between the FTIR peaks in the 

experimental groups treated with different amounts of 

MPs and the standard may indicate the existence of 

differences in the concentration of MPs in hemolymph 

and hepatopancreas. 

Discussions 

The spectra of the polyethylene obtained in disk form 

are shown in Figures 1-3. The results of this study 

showed that exposure of crayfish to MPs for 28 days 

led to the accumulation of MPs in the hemolymph, 

intestine and hepatopancreas (Wang et al., 2020; Kim 

et al., 2021) Fourier-transform infrared spectroscopy 

(FTIR) is a well-known analytical tool that can detect 

organic substances' functional groups and molecular 

structure (Rytwo et al., 2015; Lohumi et al., 2017; 

Litvak et al., 2018). Li et al. (2022) characterized the 

FTIR bands as the functional groups related to 

polyethylene (Table 1). The band I and II at 721-993 

cm-1, indicated the existence of aromatics derivatives. 

The band III and IV at 950-1300 cm-1 demonstrated 

phenols, alcohols, and ethers groups. The results 

showed a significant transmittance pattern in the 

region of 1455-1646 cm -1 (band V and VI) (Gulmine 

et al., 2002; Xu et al., 2019; Daniel et al., 2020; Daniel 

et al., 2021). These peaks belong to the Light 

aromatics and aromatic ring (aryl). The band VII at 

2919 cm-1 showed methylene C-H asymmetric stretch 

groups. Different chemical bonds and structures of 

various plastics show unique spectra through FTIR 

spectroscopy. Since MPs are composed of carbon-

based functional groups linked by covalent bonds, 

these analytical tools can identify all types of plastics 

(Mecozzi et al., 2016).  

Figure 1. Fourier infrared spectroscopic spectrum related to 

hemolymph (a) samples to detect PE-MPs.  

 

Figure 2. Fourier infrared spectroscopic spectrum related to 

hepatopancreas (b) samples to detect PE-MPs.  

 

Figure 3. Fourier infrared spectroscopic spectrum related to intestine 

(c) samples to detect PE-MPs.  
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The bio-accumulation of MPs was reported in the 

visceral mass and haemolymph of the bivalve 

(Amarilladesma mactroides) and mussels 

(Brachidontes. Rodriguezii) (Truchet et al., 2021). 

Also, Fibre of MPs was detected in the whole body of 

Crangon crangon (Devriese et al., 2015), Pandalus 

borealis (Fang et al., 2018), Paratya australiensis 

(Nan et al., 2020), Fenneropenaeus indicus (Daniel et 

al., 2020), and in the stomach and foregut of 

Plesionika narval (Bordbar et al., 2018), C. crangon 

(McGoran et al., 2018), and Macrobrachium 

rosenbergii (Li et al., 2021). Bio-accumulation of MPs 

was reported in the digestive system of crustaceans 

(McGoran et al., 2018; Bordbar et al., 2018; Carreras-

Colom et al., 2018), the whole body (Daniel et al., 

2020), visceral organs (Carreras-Colom et al., 2020), 

soft tissue (Nakao et al., 2020; Daniel et al., 2021), 

gills (Zhang et al., 2019; Not et al., 2020), 

hepatopancreas (Martinelli et al., 2021; Zhang et al., 

2022), and hemolymph (Zhang et al, 2022). 

As conclusion, polyethylene MPs can be absorbed 

in the gills and intestines and enter the hemolymph. 

Then MPs are distributed through hemolymph in 

different body tissues and may accumulate. Therefore, 

the measurement of PE-MPs by the Fourier transform 

infrared spectroscopy method of chemical imaging, 

i.e., FTIR, is useful for MPs to be automatically 

analyzed. 
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